↓ Skip to main content

Posttranscriptional Regulation Controls Calretinin Expression in Malignant Pleural Mesothelioma

Overview of attention for article published in Frontiers in Genetics, May 2017
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Posttranscriptional Regulation Controls Calretinin Expression in Malignant Pleural Mesothelioma
Published in
Frontiers in Genetics, May 2017
DOI 10.3389/fgene.2017.00070
Pubmed ID
Authors

Jelena Kresoja-Rakic, Merve Sulemani, Michaela B. Kirschner, Manuel Ronner, Glen Reid, Steven Kao, Beat Schwaller, Walter Weder, Rolf A. Stahel, Emanuela Felley-Bosco

Abstract

Calretinin (CALB2) is a diagnostic and prognostic marker in malignant pleural mesothelioma (MPM). We previously reported that calretinin expression is regulated at the mRNA level. The presence of a medium-sized (573 nucleotide) 3' untranslated region (3'UTR) predicted to contain binding sites for miR-30a/b/c/d/e and miR-9 as well as an adenine/uridine-rich element (ARE) in all three transcripts arising from the CALB2 gene, suggests that calretinin expression is regulated via posttranscriptional mechanisms. Our aim was to investigate the role of the CALB2-3'UTR in the posttranscriptional regulation of calretinin expression in MPM. CALB2-3'UTR was inserted downstream of the luciferase reporter gene using pmiRGLO vector and reporter expression was determined after transfection into MPM cells. Targeted mutagenesis was used to generate variants harboring mutated miR-30 family and ARE binding sites. Electrophoretic mobility shift assay was used to test for the presence of ARE binding proteins. CALB2-3'UTR significantly decreased luciferase activity in MPM cells. Analysis of mutation in the ARE site revealed a further destabilization of the reporter and human antigen R (HuR) binding to the ARE sequence was detected. The mutation of two miR-30 binding sites abolished CALB2-3'UTR destabilization effect; a transient delivery of miR-30e-5p mimics or anti-miR into MPM cells resulted in a significant decrease/increase of the luciferase reporter expression and calretinin protein, respectively. Moreover, overexpression of CALB2-3'UTR quenched the effect of miR-30e-5p mimics on calretinin protein levels, possibly by sequestering the mimics, thereby suggesting a competitive endogenous RNA network. Finally, by data mining we observed that expression of miR-30e-5p was negatively correlated with the calretinin expression in a cohort of MPM patient samples. Our data show the role of (1) adenine-uridine (AU)-binding proteins in calretinin stabilization and (2) miR-30e-5p in the posttranscriptional negative regulation of calretinin expression via interaction with its 3'UTR. Furthermore, our study demonstrates a possible physiological role of calretinin's alternatively spliced transcripts.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 16%
Researcher 3 16%
Student > Postgraduate 3 16%
Professor 2 11%
Student > Master 2 11%
Other 3 16%
Unknown 3 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 26%
Pharmacology, Toxicology and Pharmaceutical Science 2 11%
Neuroscience 2 11%
Medicine and Dentistry 2 11%
Computer Science 1 5%
Other 3 16%
Unknown 4 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 June 2017.
All research outputs
#15,462,982
of 22,977,819 outputs
Outputs from Frontiers in Genetics
#5,488
of 12,014 outputs
Outputs of similar age
#197,419
of 314,113 outputs
Outputs of similar age from Frontiers in Genetics
#39
of 53 outputs
Altmetric has tracked 22,977,819 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,014 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,113 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.