↓ Skip to main content

Endurance Exercise Ability in the Horse: A Trait with Complex Polygenic Determinism

Overview of attention for article published in Frontiers in Genetics, June 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
7 X users
facebook
1 Facebook page
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Endurance Exercise Ability in the Horse: A Trait with Complex Polygenic Determinism
Published in
Frontiers in Genetics, June 2017
DOI 10.3389/fgene.2017.00089
Pubmed ID
Authors

Anne Ricard, Céline Robert, Christine Blouin, Fanny Baste, Gwendoline Torquet, Caroline Morgenthaler, Julie Rivière, Nuria Mach, Xavier Mata, Laurent Schibler, Eric Barrey

Abstract

Endurance horses are able to run at more than 20 km/h for 160 km (in bouts of 30-40 km). This level of performance is based on intense aerobic metabolism, effective body heat dissipation and the ability to endure painful exercise. The known heritabilities of endurance performance and exercise-related physiological traits in Arabian horses suggest that adaptation to extreme endurance exercise is influenced by genetic factors. The objective of the present genome-wide association study (GWAS) was to identify single nucleotide polymorphisms (SNPs) related to endurance racing performance in 597 Arabian horses. The performance traits studied were the total race distance, average race speed and finishing status (qualified, eliminated or retired). We used three mixed models that included a fixed allele or genotype effect and a random, polygenic effect. Quantile-quantile plots were acceptable, and the regression coefficients for actual vs. expected log10p-values ranged from 0.865 to 1.055. The GWAS revealed five significant quantitative trait loci (QTL) corresponding to 6 SNPs on chromosomes 6, 1, 7, 16, and 29 (two SNPs) with corrected p-values from 1.7 × 10(-6) to 1.8 × 10(-5). Annotation of these 5 QTL revealed two genes: sortilin-related VPS10-domain-containing receptor 3 (SORCS3) on chromosome 1 is involved in protein trafficking, and solute carrier family 39 member 12 (SLC39A12) on chromosome 29 is active in zinc transport and cell homeostasis. These two coding genes could be involved in neuronal tissues (CNS). The other QTL on chromosomes 6, 7, and 16 may be involved in the regulation of the gene expression through non-coding RNAs, CpG islands and transcription factor binding sites. On chromosome 6, a new candidate equine long non-coding RNA (KCNQ1OT1 ortholog: opposite antisense transcript 1 of potassium voltage-gated channel subfamily Q member 1 gene) was predicted in silico and validated by RT-qPCR in primary cultures of equine myoblasts and fibroblasts. This lncRNA could be one element of the cardiac rhythm regulation. Our GWAS revealed that equine performance during endurance races is a complex polygenic trait, and is partially governed by at least 5 QTL: two coding genes involved in neuronal tissues and three other loci with many regulatory functions such as slowing down heart rate.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 78 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 15%
Researcher 8 10%
Student > Bachelor 8 10%
Student > Master 7 9%
Other 6 8%
Other 9 12%
Unknown 28 36%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 31%
Veterinary Science and Veterinary Medicine 7 9%
Medicine and Dentistry 6 8%
Biochemistry, Genetics and Molecular Biology 4 5%
Sports and Recreations 3 4%
Other 3 4%
Unknown 31 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 April 2021.
All research outputs
#4,507,975
of 22,982,639 outputs
Outputs from Frontiers in Genetics
#1,356
of 12,033 outputs
Outputs of similar age
#79,169
of 315,496 outputs
Outputs of similar age from Frontiers in Genetics
#16
of 46 outputs
Altmetric has tracked 22,982,639 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,033 research outputs from this source. They receive a mean Attention Score of 3.7. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,496 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.