↓ Skip to main content

Illustrating, Quantifying, and Correcting for Bias in Post-hoc Analysis of Gene-Based Rare Variant Tests of Association

Overview of attention for article published in Frontiers in Genetics, September 2017
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Illustrating, Quantifying, and Correcting for Bias in Post-hoc Analysis of Gene-Based Rare Variant Tests of Association
Published in
Frontiers in Genetics, September 2017
DOI 10.3389/fgene.2017.00117
Pubmed ID
Authors

Kelsey E. Grinde, Jaron Arbet, Alden Green, Michael O'Connell, Alessandra Valcarcel, Jason Westra, Nathan Tintle

Abstract

To date, gene-based rare variant testing approaches have focused on aggregating information across sets of variants to maximize statistical power in identifying genes showing significant association with diseases. Beyond identifying genes that are associated with diseases, the identification of causal variant(s) in those genes and estimation of their effect is crucial for planning replication studies and characterizing the genetic architecture of the locus. However, we illustrate that straightforward single-marker association statistics can suffer from substantial bias introduced by conditioning on gene-based test significance, due to the phenomenon often referred to as "winner's curse." We illustrate the ramifications of this bias on variant effect size estimation and variant prioritization/ranking approaches, outline parameters of genetic architecture that affect this bias, and propose a bootstrap resampling method to correct for this bias. We find that our correction method significantly reduces the bias due to winner's curse (average two-fold decrease in bias, p < 2.2 × 10(-6)) and, consequently, substantially improves mean squared error and variant prioritization/ranking. The method is particularly helpful in adjustment for winner's curse effects when the initial gene-based test has low power and for relatively more common, non-causal variants. Adjustment for winner's curse is recommended for all post-hoc estimation and ranking of variants after a gene-based test. Further work is necessary to continue seeking ways to reduce bias and improve inference in post-hoc analysis of gene-based tests under a wide variety of genetic architectures.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 27%
Student > Master 2 18%
Professor 1 9%
Researcher 1 9%
Professor > Associate Professor 1 9%
Other 0 0%
Unknown 3 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 27%
Biochemistry, Genetics and Molecular Biology 2 18%
Computer Science 1 9%
Unknown 5 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 April 2020.
All research outputs
#17,915,942
of 23,002,898 outputs
Outputs from Frontiers in Genetics
#6,156
of 12,064 outputs
Outputs of similar age
#226,874
of 316,254 outputs
Outputs of similar age from Frontiers in Genetics
#44
of 62 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,064 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,254 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.