↓ Skip to main content

Griffin: A Tool for Symbolic Inference of Synchronous Boolean Molecular Networks

Overview of attention for article published in Frontiers in Genetics, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Griffin: A Tool for Symbolic Inference of Synchronous Boolean Molecular Networks
Published in
Frontiers in Genetics, March 2018
DOI 10.3389/fgene.2018.00039
Pubmed ID
Authors

Stalin Muñoz, Miguel Carrillo, Eugenio Azpeitia, David A. Rosenblueth

Abstract

Boolean networks are important models of biochemical systems, located at the high end of the abstraction spectrum. A number of Boolean gene networks have been inferred following essentially the same method. Such a method first considers experimental data for a typically underdetermined "regulation" graph. Next, Boolean networks are inferred by using biological constraints to narrow the search space, such as a desired set of (fixed-point or cyclic) attractors. We describe Griffin, a computer tool enhancing this method. Griffin incorporates a number of well-established algorithms, such as Dubrova and Teslenko's algorithm for finding attractors in synchronous Boolean networks. In addition, a formal definition of regulation allows Griffin to employ "symbolic" techniques, able to represent both large sets of network states and Boolean constraints. We observe that when the set of attractors is required to be an exact set, prohibiting additional attractors, a naive Boolean coding of this constraint may be unfeasible. Such cases may be intractable even with symbolic methods, as the number of Boolean constraints may be astronomically large. To overcome this problem, we employ an Artificial Intelligence technique known as "clause learning" considerably increasing Griffin's scalability. Without clause learning only toy examples prohibiting additional attractors are solvable: only one out of seven queries reported here is answered. With clause learning, by contrast, all seven queries are answered. We illustrate Griffin with three case studies drawn from the Arabidopsis thaliana literature. Griffin is available at: http://turing.iimas.unam.mx/griffin.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 19%
Student > Bachelor 6 19%
Other 4 13%
Researcher 3 9%
Librarian 2 6%
Other 6 19%
Unknown 5 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 25%
Agricultural and Biological Sciences 6 19%
Computer Science 6 19%
Nursing and Health Professions 1 3%
Business, Management and Accounting 1 3%
Other 4 13%
Unknown 6 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 March 2018.
All research outputs
#15,271,180
of 22,709,015 outputs
Outputs from Frontiers in Genetics
#5,392
of 11,756 outputs
Outputs of similar age
#211,202
of 331,065 outputs
Outputs of similar age from Frontiers in Genetics
#87
of 133 outputs
Altmetric has tracked 22,709,015 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,756 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,065 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 133 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.