↓ Skip to main content

TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association Prediction

Overview of attention for article published in Frontiers in Genetics, July 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association Prediction
Published in
Frontiers in Genetics, July 2018
DOI 10.3389/fgene.2018.00234
Pubmed ID
Authors

Xing Chen, Jia Qu, Jun Yin

Abstract

In recent years, microRNAs (miRNAs) have been confirmed to be involved in many important biological processes and associated with various kinds of human complex diseases. Therefore, predicting potential associations between miRNAs and diseases with the huge number of verified heterogeneous biological datasets will provide a new perspective for disease therapy. In this article, we developed a novel computational model of Triple Layer Heterogeneous Network based inference for MiRNA-Disease Association prediction (TLHNMDA) by using the experimentally verified miRNA-disease associations, miRNA-long noncoding RNA (lncRNA) interactions, miRNA function similarity information, disease semantic similarity information and Gaussian interaction profile kernel similarity for lncRNAs into an triple layer heterogeneous network to predict new miRNA-disease associations. As a result, the AUCs of TLHNMDA are 0.8795 and 0.8795 ± 0.0010 based on leave-one-out cross validation (LOOCV) and 5-fold cross validation, respectively. Furthermore, TLHNMDA was implemented on three complex human diseases to evaluate predictive ability. As a result, 84% (kidney neoplasms), 78% (lymphoma) and 76% (prostate neoplasms) of top 50 predicted miRNAs for the three complex diseases can be verified by biological experiments. In addition, based on the HMDD v1.0 database, 98% of top 50 potential esophageal neoplasms-associated miRNAs were confirmed by experimental reports. It is expected that TLHNMDA could be a useful model to predict potential miRNA-disease associations with high prediction accuracy and stability.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 31%
Student > Master 3 19%
Researcher 2 13%
Student > Bachelor 2 13%
Unknown 4 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 44%
Computer Science 5 31%
Engineering 1 6%
Unknown 3 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 July 2018.
All research outputs
#18,641,800
of 23,094,276 outputs
Outputs from Frontiers in Genetics
#7,174
of 12,148 outputs
Outputs of similar age
#253,189
of 327,912 outputs
Outputs of similar age from Frontiers in Genetics
#113
of 140 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,148 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,912 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 140 others from the same source and published within six weeks on either side of this one. This one is in the 2nd percentile – i.e., 2% of its contemporaries scored the same or lower than it.