↓ Skip to main content

Prediction of Drug–Gene Interaction by Using Metapath2vec

Overview of attention for article published in Frontiers in Genetics, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prediction of Drug–Gene Interaction by Using Metapath2vec
Published in
Frontiers in Genetics, July 2018
DOI 10.3389/fgene.2018.00248
Pubmed ID
Authors

Siyi Zhu, Jiaxin Bing, Xiaoping Min, Chen Lin, Xiangxiang Zeng

Abstract

Heterogeneous information networks (HINs) currently play an important role in daily life. HINs are applied in many fields, such as science research, e-commerce, recommendation systems, and bioinformatics. Particularly, HINs have been used in biomedical research. Algorithms have been proposed to calculate the correlations between drugs and targets and between diseases and genes. Recently, the interaction between drugs and human genes has become an important subject in the research on drug efficacy and human genomics. In previous studies, numerous prediction methods using machine learning and statistical prediction models were proposed to explore this interaction on the biological network. In the current work, we introduce a representation learning method into the biological heterogeneous network and use the representation learning models metapath2vec and metapath2vec++ on our dataset. We combine the adverse drug reaction (ADR) data in the drug-gene network with causal relationship between drugs and ADRs. This article first presents an analysis of the importance of predicting drug-gene relationships and discusses the existing prediction methods. Second, the skip-gram model commonly used in representation learning for natural language processing tasks is explained. Third, the metapath2vec and metapath2vec++ models for the example of drug-gene-ADR network are described. Next, the kernelized Bayesian matrix factorization algorithm is used to complete the prediction. Finally, the experimental results of both models are compared with Katz, CATAPULT, and matrix factorization, the prediction visualized using the receiver operating characteristic curves are presented, and the area under the receiver operating characteristic values for three varying algorithm parameters are calculated.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 65 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 17%
Student > Master 11 17%
Researcher 6 9%
Professor 3 5%
Student > Bachelor 3 5%
Other 9 14%
Unknown 22 34%
Readers by discipline Count As %
Computer Science 14 22%
Biochemistry, Genetics and Molecular Biology 8 12%
Medicine and Dentistry 3 5%
Pharmacology, Toxicology and Pharmaceutical Science 3 5%
Engineering 3 5%
Other 12 18%
Unknown 22 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 August 2018.
All research outputs
#15,015,838
of 23,098,660 outputs
Outputs from Frontiers in Genetics
#4,567
of 12,152 outputs
Outputs of similar age
#197,961
of 329,833 outputs
Outputs of similar age from Frontiers in Genetics
#94
of 159 outputs
Altmetric has tracked 23,098,660 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,152 research outputs from this source. They receive a mean Attention Score of 3.7. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,833 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 159 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.