↓ Skip to main content

Integrative Analyses of Transcriptome Sequencing Identify Functional miRNAs in the Chicken Embryo Fibroblasts Cells Infected With Reticuloendotheliosis Virus

Overview of attention for article published in Frontiers in Genetics, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Integrative Analyses of Transcriptome Sequencing Identify Functional miRNAs in the Chicken Embryo Fibroblasts Cells Infected With Reticuloendotheliosis Virus
Published in
Frontiers in Genetics, August 2018
DOI 10.3389/fgene.2018.00340
Pubmed ID
Authors

Jie Zhai, Chang Gao, Lisheng Fu, Long Jing, Shengyuan Dang, Shimin Zheng

Abstract

In this study, we found a much higher proportion of reticuloendotheliosis virus (REV) infected chicken embryo fibroblasts (CEF) were in active cell division phase than that of control cells which indicated that REV can affect the fate of CEF. So, we performed high-throughput sequencing and transcriptomic analysis to identify functional miRNAs, in order to figure out the possible mechanism in the interaction of REV with CEF. In total, 50 differentially expressed miRNAs (DEmiRNAs) were identified. Then target genes of DEmiRNAs were predicted and identified by transcriptome profile results. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted to analyze the identified target genes of miRNAs which showed that metabolism, cell cycle, and apoptosis were the most related pathways involved in infection of REV. We analyzed the genes related to cell cycle which indicated that CyclinD1-CDK6 complex played an important role in regulating the transition of the cell cycle from G1 phase to S phase during REV infection. Fluorescence microscope identification showed that REV inhibited the apoptosis of CEF which was in accordance with transcriptome results. A novel miRNA, named novel-72 was found, KEGG analysis was conducted to predict the biological function of its target genes which showed that those target genes were significantly enriched in mTOR signaling pathway and functioned to promote cell cycle and cell growth during the REV infection. In conclusion, REV could induce the up-regulation of cell metabolism, cell cycle and mTOR signaling pathway while inhibit apoptosis of the cell.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 40%
Researcher 1 20%
Unknown 2 40%
Readers by discipline Count As %
Veterinary Science and Veterinary Medicine 2 40%
Agricultural and Biological Sciences 1 20%
Unknown 2 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2018.
All research outputs
#14,424,488
of 23,102,082 outputs
Outputs from Frontiers in Genetics
#4,011
of 12,152 outputs
Outputs of similar age
#188,201
of 335,210 outputs
Outputs of similar age from Frontiers in Genetics
#101
of 201 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,152 research outputs from this source. They receive a mean Attention Score of 3.7. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,210 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 201 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.