↓ Skip to main content

Sinorhizobium meliloti RNase III: Catalytic Features and Impact on Symbiosis

Overview of attention for article published in Frontiers in Genetics, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sinorhizobium meliloti RNase III: Catalytic Features and Impact on Symbiosis
Published in
Frontiers in Genetics, August 2018
DOI 10.3389/fgene.2018.00350
Pubmed ID
Authors

Margarida Saramago, Marta Robledo, Rute G. Matos, José I. Jiménez-Zurdo, Cecília M. Arraiano

Abstract

Members of the ribonuclease (RNase) III family of enzymes are metal-dependent double-strand specific endoribonucleases. They are ubiquitously found and eukaryotic RNase III-like enzymes include Dicer and Drosha, involved in RNA processing and RNA interference. In this work, we have addressed the primary characterization of RNase III from the symbiotic nitrogen-fixing α-proteobacterium Sinorhizobium meliloti. The S. meliloti rnc gene does encode an RNase III-like protein (SmRNase III), with recognizable catalytic and double-stranded RNA (dsRNA)-binding domains that clusters in a branch with its α-proteobacterial counterparts. Purified SmRNase III dimerizes, is active at neutral to alkaline pH and behaves as a strict metal cofactor-dependent double-strand endoribonuclease, with catalytic features distinguishable from those of the prototypical member of the family, the Escherichia coli ortholog (EcRNase III). SmRNase III prefers Mn2+ rather than Mg2+ as metal cofactor, cleaves the generic structured R1.1 substrate at a site atypical for RNase III cleavage, and requires higher cofactor concentrations and longer dsRNA substrates than EcRNase III for optimal activity. Furthermore, the ultraconserved E125 amino acid was shown to play a major role in the metal-dependent catalysis of SmRNase III. SmRNase III degrades endogenous RNA substrates of diverse biogenesis with different efficiency, and is involved in the maturation of the 23S rRNA. SmRNase III loss-of-function neither compromises viability nor alters morphology of S. meliloti cells, but influences growth, nodulation kinetics, the onset of nitrogen fixation and the overall symbiotic efficiency of this bacterium on the roots of its legume host, alfalfa, which ultimately affects plant growth. Our results support an impact of SmRNase III on nodulation and symbiotic nitrogen fixation in plants.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 27%
Student > Ph. D. Student 3 20%
Student > Master 2 13%
Student > Bachelor 2 13%
Other 1 7%
Other 2 13%
Unknown 1 7%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 33%
Agricultural and Biological Sciences 5 33%
Nursing and Health Professions 1 7%
Immunology and Microbiology 1 7%
Psychology 1 7%
Other 1 7%
Unknown 1 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2018.
All research outputs
#13,388,707
of 23,102,082 outputs
Outputs from Frontiers in Genetics
#3,012
of 12,152 outputs
Outputs of similar age
#165,662
of 334,863 outputs
Outputs of similar age from Frontiers in Genetics
#81
of 201 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 12,152 research outputs from this source. They receive a mean Attention Score of 3.7. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,863 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 201 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.