↓ Skip to main content

CD4 binding determinant mimicry for HIV vaccine design

Overview of attention for article published in Frontiers in immunology, January 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
CD4 binding determinant mimicry for HIV vaccine design
Published in
Frontiers in immunology, January 2012
DOI 10.3389/fimmu.2012.00383
Pubmed ID
Authors

Yasuhiro Nishiyama, Stephanie Planque, Carl V. Hanson, Richard J. Massey, Sudhir Paul

Abstract

The immunodominant epitopes expressed by the HIV-1 envelope protein gp120 are hypermutable, defeating attempts to develop an effective HIV vaccine. Targeting the structurally conserved gp120 determinant that binds host CD4 receptors (CD4BD) and initiates infection is a more promising route to vaccination, but this has proved difficult because of the conformational flexibility of gp120 and immune evasion mechanisms used by the virus. Mimicking the outer CD4BD conformational epitopes is difficult because of their discontinuous nature. The CD4BD region composed of residues 421-433 (CD4BD(core)) is a linear epitope, but this region possesses B cell superantigenic character. While superantigen epitopes are vulnerable to a small subset of spontaneously produced neutralizing antibodies present in humans without infection (innate antibodies), their non-covalent binding to B cell receptors (BCRs) does not stimulate an effective adaptive response from B cells. Covalent binding at naturally occurring nucleophilic sites of the BCRs by an electrophilic gp120 (E-gp120) analog is a promising solution. E-gp120 induces the synthesis of neutralizing antibodies the CD4BD(core). The highly energetic covalent reaction is hypothesized to convert the abortive superantigens-BCR interaction into a stimulatory signal, and the binding of a spatially distinct epitope at the traditional combining site of the BCRs may furnish a second stimulatory signal. Flexible synthetic peptides can detect pre-existing CD4BD(core)-specific neutralizing antibodies. However, induced-fit conformational transitions of the peptides dictated by the antibody combining site structure may induce the synthesis of non-neutralizing antibodies. Successful vaccine targeting of the CD4BD will require a sufficiently rigid immunogen that mimics the native epitope conformation and bypasses B cell checkpoints restricting synthesis of the neutralizing antibodies.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 21%
Researcher 3 16%
Student > Bachelor 2 11%
Professor > Associate Professor 2 11%
Student > Master 2 11%
Other 4 21%
Unknown 2 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 37%
Chemistry 3 16%
Immunology and Microbiology 3 16%
Medicine and Dentistry 2 11%
Neuroscience 1 5%
Other 1 5%
Unknown 2 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 December 2012.
All research outputs
#20,656,820
of 25,374,917 outputs
Outputs from Frontiers in immunology
#24,744
of 31,520 outputs
Outputs of similar age
#203,874
of 250,100 outputs
Outputs of similar age from Frontiers in immunology
#147
of 275 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,520 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 250,100 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 275 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.