↓ Skip to main content

Development of Novel Arginase Inhibitors for Therapy of Endothelial Dysfunction

Overview of attention for article published in Frontiers in immunology, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
67 Dimensions

Readers on

mendeley
108 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Development of Novel Arginase Inhibitors for Therapy of Endothelial Dysfunction
Published in
Frontiers in immunology, January 2013
DOI 10.3389/fimmu.2013.00278
Pubmed ID
Authors

Jochen Steppan, Daniel Nyhan, Dan E. Berkowitz

Abstract

Endothelial dysfunction and resulting vascular pathology have been identified as an early hallmark of multiple diseases, including diabetes mellitus. One of the major contributors to endothelial dysfunction is a decrease in nitric oxide (NO) bioavailability, impaired NO signaling, and an increase in the amount of reactive oxygen species (ROS). In the endothelium NO is produced by endothelial nitric oxide synthase (eNOS), for which l-arginine is a substrate. Arginase, an enzyme critical in the urea cycle also metabolizes l-arginine, thereby directly competing with eNOS for their common substrate and constraining its bioavailability for eNOS, thereby compromising NO production. Arginase expression and activity is upregulated in many cardiovascular diseases including ischemia reperfusion injury, hypertension, atherosclerosis, and diabetes mellitus. More importantly, since the 1990s, specific arginase inhibitors such as N-hydroxy-guanidinium or N-hydroxy-nor-l-arginine, and boronic acid derivatives, such as, 2(S)-amino-6-boronohexanoic acid, and S-(2-boronoethyl)-l-cysteine, that can bridge the binuclear manganese cluster of arginase have been developed. These highly potent and specific inhibitors can now be used to probe arginase function and thereby modulate the redox milieu of the cell by changing the balance between NO and ROS. Inspired by this success, drug discovery programs have recently led to the identification of α-α-disubstituted amino acid based arginase inhibitors [such as (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid], that are currently under early investigation as therapeutics. Finally, some investigators concentrate on identification of plant derived compounds with arginase inhibitory capability, such as piceatannol-3'-O-β-d-glucopyranoside (PG). All of these synthesized or naturally derived small molecules may represent novel therapeutics for vascular disease particularly that associated with diabetes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 108 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 <1%
Unknown 107 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 19 18%
Student > Bachelor 17 16%
Researcher 16 15%
Student > Ph. D. Student 16 15%
Student > Doctoral Student 7 6%
Other 19 18%
Unknown 14 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 28 26%
Biochemistry, Genetics and Molecular Biology 18 17%
Pharmacology, Toxicology and Pharmaceutical Science 14 13%
Medicine and Dentistry 13 12%
Immunology and Microbiology 6 6%
Other 15 14%
Unknown 14 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 September 2013.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from Frontiers in immunology
#27,417
of 31,516 outputs
Outputs of similar age
#258,412
of 288,991 outputs
Outputs of similar age from Frontiers in immunology
#335
of 503 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,516 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 288,991 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 503 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.