↓ Skip to main content

Human Immunodeficiency Virus and Heparan Sulfate: From Attachment to Entry Inhibition

Overview of attention for article published in Frontiers in immunology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
5 X users

Readers on

mendeley
132 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Human Immunodeficiency Virus and Heparan Sulfate: From Attachment to Entry Inhibition
Published in
Frontiers in immunology, January 2013
DOI 10.3389/fimmu.2013.00385
Pubmed ID
Authors

Bridgette J. Connell, Hugues Lortat-Jacob

Abstract

By targeting cells that provide protection against infection, HIV-1 causes acquired immunodeficiency syndrome. Infection starts when gp120, the viral envelope glycoprotein, binds to CD4 and to a chemokine receptor usually CCR5 or CXCR4. As many microorganisms, HIV-1 also interacts with heparan sulfate (HS), a complex group of cell surface associated anionic polysaccharides. It has been thought that this binding, occurring at a step prior to CD4 recognition, increases infectivity by pre-concentrating the virion particles at the cell surface. Early work, dating from before the identification of CCR5 and CXCR4, showed that a variety of HS mimetics bind to the gp120 V3 loop through electrostatic interactions, compete with cell surface associated HS to bind the virus and consequently, neutralize the infectivity of a number of T-cell line-adapted HIV-1 strains. However, progress made to better understand HIV-1 attachment and entry, coupled with the recent identification of additional gp120 regions mediating HS recognition, have considerably modified this view. Firstly, the V3 loop from CXCR4-using viruses is much more positively charged compared to those using CCR5. HS inhibition of cell attachment is thus restricted to CXCR4-using viruses (such as T-cell line-adapted HIV-1). Secondly, studies aiming at characterizing the gp120/HS complex revealed that HS binding was far more complex than previously thought: in addition to the V3 loop of CXCR4 tropic gp120, HS interacts with several other cryptic areas of the protein, which can be induced upon CD4 binding, and are conserved amongst CCR5 and CXCR4 viruses. In view of these data, this review will detail the present knowledge on HS binding to HIV-1, with regards to attachment and entry processes. It will discuss the perspective of targeting the gp120 co-receptor binding site with HS mimetic compounds, a strategy that recently gave rise to entry inhibitors that work in the low nanomolar range, independently of co-receptor usage.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 132 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 <1%
Unknown 131 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 26 20%
Student > Ph. D. Student 25 19%
Researcher 17 13%
Student > Bachelor 12 9%
Student > Doctoral Student 6 5%
Other 15 11%
Unknown 31 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 20%
Biochemistry, Genetics and Molecular Biology 25 19%
Medicine and Dentistry 16 12%
Immunology and Microbiology 15 11%
Chemistry 9 7%
Other 10 8%
Unknown 31 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 August 2021.
All research outputs
#15,335,276
of 26,609,881 outputs
Outputs from Frontiers in immunology
#12,966
of 33,418 outputs
Outputs of similar age
#172,925
of 294,909 outputs
Outputs of similar age from Frontiers in immunology
#144
of 503 outputs
Altmetric has tracked 26,609,881 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 33,418 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.7. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 294,909 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 503 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.