↓ Skip to main content

NOTCH1 Can Initiate NF-κB Activation via Cytosolic Interactions with Components of the T Cell Signalosome

Overview of attention for article published in Frontiers in immunology, May 2014
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
NOTCH1 Can Initiate NF-κB Activation via Cytosolic Interactions with Components of the T Cell Signalosome
Published in
Frontiers in immunology, May 2014
DOI 10.3389/fimmu.2014.00249
Pubmed ID
Authors

Hyun Mu Shin, Mulualem E. Tilahun, Ok Hyun Cho, Karthik Chandiran, Christina Arieta Kuksin, Shilpa Keerthivasan, Abdul H. Fauq, Todd E. Golde, Lucio Miele, Margot Thome, Barbara A. Osborne, Lisa M. Minter

Abstract

T cell stimulation requires the input and integration of external signals. Signaling through the T cell receptor (TCR) is known to induce formation of the membrane-tethered CBM complex, comprising CARMA1, BCL10, and MALT1, which is required for TCR-mediated NF-κB activation. TCR signaling has been shown to activate NOTCH proteins, transmembrane receptors also implicated in NF-κB activation. However, the link between TCR-mediated NOTCH signaling and early events leading to induction of NF-κB activity remains unclear. In this report, we demonstrate a novel cytosolic function for NOTCH1 and show that it is essential to CBM complex formation. Using a model of skin allograft rejection, we show in vivo that NOTCH1 acts in the same functional pathway as PKCθ, a T cell-specific kinase important for CBM assembly and classical NF-κB activation. We further demonstrate in vitro NOTCH1 associates physically with PKCθ and CARMA1 in the cytosol. Unexpectedly, when NOTCH1 expression was abrogated using RNAi approaches, interactions between CARMA1, BCL10, and MALT1 were lost. This failure in CBM assembly reduced inhibitor of kappa B alpha phosphorylation and diminished NF-κB-DNA binding. Finally, using a luciferase gene reporter assay, we show the intracellular domain of NOTCH1 can initiate robust NF-κB activity in stimulated T cells, even when NOTCH1 is excluded from the nucleus through modifications that restrict it to the cytoplasm or hold it tethered to the membrane. Collectively, these observations provide evidence that NOTCH1 may facilitate early events during T cell activation by nucleating the CBM complex and initiating NF-κB signaling.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 41 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 29%
Researcher 8 19%
Professor 3 7%
Student > Doctoral Student 2 5%
Unspecified 2 5%
Other 8 19%
Unknown 7 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 31%
Biochemistry, Genetics and Molecular Biology 6 14%
Immunology and Microbiology 6 14%
Medicine and Dentistry 5 12%
Unspecified 2 5%
Other 3 7%
Unknown 7 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 May 2014.
All research outputs
#19,945,185
of 25,374,917 outputs
Outputs from Frontiers in immunology
#22,575
of 31,520 outputs
Outputs of similar age
#167,597
of 240,813 outputs
Outputs of similar age from Frontiers in immunology
#78
of 133 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,520 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 240,813 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 133 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.