↓ Skip to main content

HIV-1 Infection of T Lymphocytes and Macrophages Affects Their Migration via Nef

Overview of attention for article published in Frontiers in immunology, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
68 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
HIV-1 Infection of T Lymphocytes and Macrophages Affects Their Migration via Nef
Published in
Frontiers in immunology, October 2015
DOI 10.3389/fimmu.2015.00514
Pubmed ID
Authors

Christel Vérollet, Véronique Le Cabec, Isabelle Maridonneau-Parini

Abstract

The human immunodeficiency virus (HIV-1) disseminates in the body and is found in several organs and tissues. Although HIV-1 mainly targets both CD4(+) T lymphocytes and macrophages, it has contrasting effects between these cell populations. HIV-1 infection namely reduces the viability of CD4(+) T cells, whereas infected macrophages are long-lived. In addition, the migration of T cells is reduced by the infection, whereas HIV-1 differentially modulates the migration modes of macrophages. In 2-dimensions (2D) assays, infected macrophages are less motile compared to the control counterparts. In 3D environments, macrophages use two migration modes that are dependent on the matrix architecture: amoeboid and mesenchymal migration. HIV-1-infected macrophages exhibit a reduced amoeboid migration but an enhanced mesenchymal migration, via the viral protein Nef. Indeed, the mesenchymal migration involves podosomes, and Nef stabilizes these cell structures through the activation of the tyrosine kinase Hck, which in turn phosphorylates the Wiskott-Aldrich syndrome protein (WASP). WASP is a key player in actin remodeling and cell migration. The reprogramed motility of infected macrophages observed in vitro correlates in vivo with enhanced macrophage infiltration in experimental tumors in Nef-transgenic mice compared to control mice. In conclusion, HIV infection of host target cells modifies their migration capacity; we infer that HIV-1 enhances virus spreading in confined environments by reducing T cells migration, and facilitates virus dissemination into different organs and tissues of the human body by enhancing macrophage mesenchymal migration.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 68 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 68 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 22%
Student > Bachelor 9 13%
Student > Ph. D. Student 7 10%
Student > Master 7 10%
Student > Doctoral Student 5 7%
Other 10 15%
Unknown 15 22%
Readers by discipline Count As %
Immunology and Microbiology 15 22%
Agricultural and Biological Sciences 14 21%
Biochemistry, Genetics and Molecular Biology 11 16%
Medicine and Dentistry 6 9%
Engineering 2 3%
Other 3 4%
Unknown 17 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 June 2020.
All research outputs
#16,737,737
of 25,394,764 outputs
Outputs from Frontiers in immunology
#18,354
of 31,554 outputs
Outputs of similar age
#164,372
of 289,829 outputs
Outputs of similar age from Frontiers in immunology
#95
of 161 outputs
Altmetric has tracked 25,394,764 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,554 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 289,829 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 161 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.