↓ Skip to main content

Hypersensitivity Responses in the Central Nervous System

Overview of attention for article published in Frontiers in immunology, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hypersensitivity Responses in the Central Nervous System
Published in
Frontiers in immunology, October 2015
DOI 10.3389/fimmu.2015.00517
Pubmed ID
Authors

Reza Khorooshi, Nasrin Asgari, Marlene Thorsen Mørch, Carsten Tue Berg, Trevor Owens

Abstract

Immune-mediated tissue damage or hypersensitivity can be mediated by autospecific IgG antibodies. Pathology results from activation of complement, and antibody-dependent cellular cytotoxicity, mediated by inflammatory effector leukocytes include macrophages, natural killer cells, and granulocytes. Antibodies and complement have been associated to demyelinating pathology in multiple sclerosis (MS) lesions, where macrophages predominate among infiltrating myeloid cells. Serum-derived autoantibodies with predominant specificity for the astrocyte water channel aquaporin-4 (AQP4) are implicated as inducers of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating disease where activated neutrophils infiltrate, unlike in MS. The most widely used model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized disease that can be transferred to naive animals with CD4(+) T cells, but not with antibodies. By contrast, NMO-like astrocyte and myelin pathology can be transferred to mice with AQP4-IgG from NMO patients. This is dependent on complement, and does not require T cells. Consistent with clinical observations that interferon-beta is ineffective as a therapy for NMO, NMO-like pathology is significantly reduced in mice lacking the Type I IFN receptor. In MS, there is evidence for intrathecal synthesis of antibodies as well as blood-brain barrier (BBB) breakdown, whereas in NMO, IgG accesses the CNS from blood. Transfer models involve either direct injection of antibody and complement to the CNS, or experimental manipulations to induce BBB breakdown. We here review studies in MS and NMO that elucidate roles for IgG and complement in the induction of BBB breakdown, astrocytopathy, and demyelinating pathology. These studies point to significance of T-independent effector mechanisms in neuroinflammation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 20%
Researcher 11 19%
Student > Master 10 17%
Student > Bachelor 8 14%
Other 4 7%
Other 6 10%
Unknown 8 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 25%
Medicine and Dentistry 12 20%
Neuroscience 7 12%
Biochemistry, Genetics and Molecular Biology 5 8%
Nursing and Health Professions 4 7%
Other 6 10%
Unknown 10 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 May 2022.
All research outputs
#15,606,171
of 26,414,132 outputs
Outputs from Frontiers in immunology
#13,937
of 33,172 outputs
Outputs of similar age
#141,211
of 290,010 outputs
Outputs of similar age from Frontiers in immunology
#61
of 161 outputs
Altmetric has tracked 26,414,132 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 33,172 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.6. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 290,010 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 161 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.