↓ Skip to main content

MHC and KIR Polymorphisms in Rhesus Macaque SIV Infection

Overview of attention for article published in Frontiers in immunology, October 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MHC and KIR Polymorphisms in Rhesus Macaque SIV Infection
Published in
Frontiers in immunology, October 2015
DOI 10.3389/fimmu.2015.00540
Pubmed ID
Authors

Lutz Walter, Aftab A. Ansari

Abstract

Natural killer lymphocytes are essentially involved as the first line of defense against agents such as viruses and malignant cells. The activity of these cells is regulated via interaction of specific and diverse killer cell immunoglobulin-like receptors (KIR) with the highly polymorphic cognate MHC class I proteins on target cells. Genetic variability of both KIR and MHC-I ligands has been shown to be associated with resistance to many diseases, including infection with the immunodeficiency virus. Disease course and progression to AIDS after infection with human immunodeficiency virus-1 (HIV-1) is essentially influenced by the presence of the stimulatory KIR3DS1 receptor in combination with HLA-Bw4. Knowledge of such genetic interactions that contribute to not only disease resistance but also susceptibility are just as important. Such combined genetic factors were recently reported in the rhesus macaque AIDS model. Here, we review the rhesus macaque MHC class I and KIR gene systems and the role of their polymorphisms in the SIV infection model.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 8%
Unknown 22 92%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 21%
Student > Ph. D. Student 4 17%
Student > Master 3 13%
Student > Postgraduate 2 8%
Professor > Associate Professor 2 8%
Other 2 8%
Unknown 6 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 25%
Agricultural and Biological Sciences 4 17%
Immunology and Microbiology 3 13%
Medicine and Dentistry 2 8%
Unspecified 1 4%
Other 1 4%
Unknown 7 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 November 2015.
All research outputs
#17,285,668
of 25,373,627 outputs
Outputs from Frontiers in immunology
#20,297
of 31,516 outputs
Outputs of similar age
#176,256
of 294,140 outputs
Outputs of similar age from Frontiers in immunology
#109
of 160 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,516 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 294,140 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 160 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.