↓ Skip to main content

Differential CCR7 Targeting in Dendritic Cells by Three Naturally Occurring CC-Chemokines

Overview of attention for article published in Frontiers in immunology, December 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (70th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
3 X users
patent
1 patent

Citations

dimensions_citation
59 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential CCR7 Targeting in Dendritic Cells by Three Naturally Occurring CC-Chemokines
Published in
Frontiers in immunology, December 2016
DOI 10.3389/fimmu.2016.00568
Pubmed ID
Authors

Gertrud M. Hjortø, Olav Larsen, Anne Steen, Viktorija Daugvilaite, Christian Berg, Suzan Fares, Morten Hansen, Simi Ali, Mette M. Rosenkilde

Abstract

The CCR7 ligands CCL19 and CCL21 are increasingly recognized as functionally different (biased). Using mature human dendritic cells (DCs), we show that CCL19 is more potent than CCL21 in inducing 3D chemotaxis. Intriguingly, CCL21 induces prolonged and more efficient ERK1/2 activation compared with CCL19 and a C-terminal truncated (tailless) CCL21 in DCs. In contrast, tailless-CCL21 displays increased potency in DC chemotaxis compared with native CCL21. Using a CCL21-specific antibody, we show that CCL21, but not tailless-CCL21, accumulates at the cell surface. In addition, removal of sialic acid from the cell surface by neuraminidase treatment impairs ERK1/2 activation by CCL21, but not by CCL19 or tailless-CCL21. Using standard laboratory cell lines, we observe low potency of both CCL21 and tailless-CCL21 in G protein activation and β-arrestin recruitment compared with CCL19, indicating that the tail itself does not improve receptor interaction. Chemokines interact with their receptors in a stepwise manner with ultimate docking of their N-terminus into the main binding pocket. Employing site-directed mutagenesis we identify residues in this pocket of selective CCL21 importance. We also identify a molecular switch in the top of TM7 important for keeping CCR7 in an inactive conformation (Tyr312), as introduction of the chemokine receptor-conserved Glu (or Ala) induces high constitutive activity. Summarized, we show that the interaction of the tail of CCL21 with polysialic acid is needed for strong ERK signaling, whereas it impairs CCL21-mediated chemotaxis and has no impact on receptor docking consistent with the current model of chemokine:receptor interaction. This indicates that future selective pharmacological targeting of CCL19 versus CCL21 should focus on a differential targeting of the main receptor pocket, while selective targeting of tailless-CCL21 versus CCL21 and CCL19 requires targeting of the glycosaminoglycan (GAG) interaction.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 14 22%
Student > Bachelor 13 20%
Student > Ph. D. Student 8 13%
Student > Master 7 11%
Student > Doctoral Student 2 3%
Other 7 11%
Unknown 13 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 22%
Immunology and Microbiology 14 22%
Agricultural and Biological Sciences 8 13%
Engineering 3 5%
Chemistry 3 5%
Other 8 13%
Unknown 14 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2019.
All research outputs
#7,544,359
of 26,316,305 outputs
Outputs from Frontiers in immunology
#8,617
of 32,943 outputs
Outputs of similar age
#123,150
of 425,514 outputs
Outputs of similar age from Frontiers in immunology
#84
of 263 outputs
Altmetric has tracked 26,316,305 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 32,943 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.6. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 425,514 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 263 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.