↓ Skip to main content

Granule-Dependent Natural Killer Cell Cytotoxicity to Fungal Pathogens

Overview of attention for article published in Frontiers in immunology, January 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Granule-Dependent Natural Killer Cell Cytotoxicity to Fungal Pathogens
Published in
Frontiers in immunology, January 2017
DOI 10.3389/fimmu.2016.00692
Pubmed ID
Authors

Henry Ogbomo, Christopher H. Mody

Abstract

Natural killer (NK) cells kill or inhibit the growth of a number of fungi including Cryptococcus, Candida, Aspergillus, Rhizopus, and Paracoccidioides. Although many fungi are not dangerous, invasive fungal pathogens, such as Cryptococcus neoformans, cause life-threatening disease in individuals with impaired cell-mediated immunity. While there are similarities to cell-mediated killing of tumor cells, there are also important differences. Similar to tumor killing, NK cells directly kill fungi in a receptor-mediated and cytotoxic granule-dependent manner. Unlike tumor cell killing where multiple NK cell-activating receptors cooperate and signal events that mediate cytotoxicity, only the NKp30 receptor has been described to mediate signaling events that trigger the NK cell to mobilize its cytolytic payload to the site of interaction with C. neoformans and Candida albicans, subsequently leading to granule exocytosis and fungal killing. More recently, the NKp46 receptor was reported to bind Candida glabrata adhesins Epa1, 6, and 7 and directly mediate fungal clearance. A number of unanswered questions remain. For example, is only one NK cell-activating receptor sufficient for signaling leading to fungal killing? Are the signaling pathways activated by fungi similar to those activated by tumor cells during NK cell killing? How do the cytolytic granules traffic to the site of interaction with fungi, and how does this process compare with tumor killing? Recent insights into receptor use, intracellular signaling and cytolytic granule trafficking during NK cell-mediated fungal killing will be compared to tumor killing, and the implications for therapeutic approaches will be discussed.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Israel 1 2%
Germany 1 2%
Unknown 44 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 20%
Student > Ph. D. Student 9 20%
Student > Master 8 17%
Student > Bachelor 2 4%
Student > Doctoral Student 1 2%
Other 5 11%
Unknown 12 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 20%
Immunology and Microbiology 9 20%
Agricultural and Biological Sciences 8 17%
Veterinary Science and Veterinary Medicine 2 4%
Chemical Engineering 1 2%
Other 4 9%
Unknown 13 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 January 2017.
All research outputs
#22,759,802
of 25,374,917 outputs
Outputs from Frontiers in immunology
#27,421
of 31,520 outputs
Outputs of similar age
#364,525
of 423,602 outputs
Outputs of similar age from Frontiers in immunology
#315
of 348 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,520 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 423,602 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 348 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.