↓ Skip to main content

Interaction and Mutual Activation of Different Innate Immune Cells Is Necessary to Kill and Clear Hepatitis C Virus-Infected Cells

Overview of attention for article published in Frontiers in immunology, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interaction and Mutual Activation of Different Innate Immune Cells Is Necessary to Kill and Clear Hepatitis C Virus-Infected Cells
Published in
Frontiers in immunology, September 2017
DOI 10.3389/fimmu.2017.01238
Pubmed ID
Authors

Volker Klöss, Oliver Grünvogel, Guido Wabnitz, Tatjana Eigenbrod, Stefanie Ehrhardt, Felix Lasitschka, Volker Lohmann, Alexander H. Dalpke

Abstract

Innate immune cells can sense hepatitis C virus (HCV)-infected cells and respond with anti-viral actions including secretion of interferons (IFNs). In previous studies, the response of individual innate immune cells against HCV was analyzed in detail. We hypothesized that interaction of multiple innate immune cells increases the magnitude of the immune response and eventually leads to clearance of HCV-infected cells. To investigate this, we co-cultured Huh-7 HCV subgenomic replicon (SGR) cells with peripheral blood mononuclear cells (PBMCs). We confirm secretion of IFNα by plasmacytoid dendritic cells (pDCs) and IFNγ by natural killer (NK) cells in the co-culture setup. Moreover, we observed that also monocytes contribute to the anti-viral response. Flow cytometry and ImageStream analysis demonstrated that monocytes take up material from HCV SGR cells in co-culture with PBMCs. Preceding the uptake, PBMCs caused apoptosis of HCV SGR cells by tumor necrosis factor-related apoptosis inducing ligand (TRAIL) expression on NK cells. We observed that only the interplay of monocytes, pDCs, and NK cells resulted in efficient clearance of HCV SGR cells, while these cell populations alone did not kill HCV SGR cells. Despite similar TRAIL receptor expression on Huh-7 control cells and HCV SGR cells, HCV activated PBMCs specifically killed HCV SGR cells and did not target Huh-7 control cells. Finally, we showed that HCV replicating cells per se are sensitive toward TRAIL-induced apoptosis. Our results highlight the importance of the interplay of different innate immune cells to initiate an efficient, rapid, and specific response against HCV-infected cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 27%
Student > Ph. D. Student 4 18%
Student > Bachelor 3 14%
Student > Master 3 14%
Unknown 6 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 18%
Immunology and Microbiology 3 14%
Medicine and Dentistry 3 14%
Nursing and Health Professions 2 9%
Chemistry 1 5%
Other 1 5%
Unknown 8 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 November 2017.
All research outputs
#16,051,091
of 25,382,440 outputs
Outputs from Frontiers in immunology
#16,717
of 31,537 outputs
Outputs of similar age
#187,031
of 329,378 outputs
Outputs of similar age from Frontiers in immunology
#326
of 525 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,378 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 525 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.