↓ Skip to main content

Deletion of the Mineralocorticoid Receptor in Myeloid Cells Attenuates Central Nervous System Autoimmunity

Overview of attention for article published in Frontiers in immunology, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Deletion of the Mineralocorticoid Receptor in Myeloid Cells Attenuates Central Nervous System Autoimmunity
Published in
Frontiers in immunology, October 2017
DOI 10.3389/fimmu.2017.01319
Pubmed ID
Authors

Elena Montes-Cobos, Nils Schweingruber, Xiao Li, Henrike J. Fischer, Holger M. Reichardt, Fred Lühder

Abstract

Myeloid cells play an important role in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Monocytes, macrophages, and microglia can adopt two distinct phenotypes, with M1-polarized cells being more related to inflammation and autoimmunity while M2-polarized cells contribute to tissue repair and anti-inflammatory processes. Here, we show that deletion of the mineralocorticoid receptor (MR) in bone marrow-derived macrophages and peritoneal macrophages caused their polarization toward the M2 phenotype with its distinct gene expression, altered phagocytic and migratory properties, and dampened NO production. After induction of EAE, mice that are selectively devoid of the MR in their myeloid cells (MR(lysM) mice) showed diminished clinical symptoms and ameliorated histological hallmarks of neuroinflammation. T cells in peripheral lymphoid organs of these mice produced less pro-inflammatory cytokines while their proliferation and the abundance of regulatory T cells were unaltered. The numbers of inflammatory monocytes and reactive microglia in the central nervous system (CNS) in MR(lysM) mice were significantly lower and they adopted an M2-polarized phenotype based on their gene expression profile, presumably explaining the ameliorated neuroinflammation. Our results indicate that the MR in myeloid cells plays a critical role for CNS autoimmunity, providing a rational to interfere with diseases such as MS by pharmacologically targeting this receptor.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 23%
Student > Ph. D. Student 6 15%
Student > Bachelor 4 10%
Student > Doctoral Student 3 8%
Other 3 8%
Other 5 13%
Unknown 9 23%
Readers by discipline Count As %
Medicine and Dentistry 7 18%
Neuroscience 5 13%
Agricultural and Biological Sciences 4 10%
Veterinary Science and Veterinary Medicine 3 8%
Biochemistry, Genetics and Molecular Biology 2 5%
Other 8 21%
Unknown 10 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 November 2017.
All research outputs
#16,962,098
of 25,703,943 outputs
Outputs from Frontiers in immunology
#18,671
of 32,216 outputs
Outputs of similar age
#204,347
of 336,698 outputs
Outputs of similar age from Frontiers in immunology
#370
of 545 outputs
Altmetric has tracked 25,703,943 research outputs across all sources so far. This one is in the 31st percentile – i.e., 31% of other outputs scored the same or lower than it.
So far Altmetric has tracked 32,216 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.3. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,698 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 545 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.