↓ Skip to main content

Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy

Overview of attention for article published in Frontiers in immunology, November 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

news
1 news outlet
twitter
12 X users
patent
1 patent

Citations

dimensions_citation
141 Dimensions

Readers on

mendeley
315 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy
Published in
Frontiers in immunology, November 2017
DOI 10.3389/fimmu.2017.01442
Pubmed ID
Authors

Yaozhong Hu, Changxiao Liu, Serge Muyldermans

Abstract

The development of innovative targeted therapeutic approaches are expected to surpass the efficacy of current forms of treatments and cause less damage to healthy cells surrounding the tumor site. Since the first development of targeting agents from hybridoma's, monoclonal antibodies (mAbs) have been employed to inhibit tumor growth and proliferation directly or to deliver effector molecules to tumor cells. However, the full potential of such a delivery strategy is hampered by the size of mAbs, which will obstruct the targeted delivery system to access the tumor tissue. By serendipity, a new kind of functional homodimeric antibody format was discovered in camelidae, known as heavy-chain antibodies (HCAbs). The cloning of the variable domain of HCAbs produces an attractive minimal-sized alternative for mAbs, referred to as VHH or nanobodies (Nbs). Apart from their dimensions in the single digit nanometer range, the unique characteristics of Nbs combine a high stability and solubility, low immunogenicity and excellent affinity and specificity against all possible targets including tumor markers. This stimulated the development of tumor-targeted therapeutic strategies. Some autonomous Nbs have been shown to act as antagonistic drugs, but more importantly, the targeting capacity of Nbs has been exploited to create drug delivery systems. Obviously, Nb-based targeted cancer therapy is mainly focused toward extracellular tumor markers, since the membrane barrier prevents antibodies to reach the most promising intracellular tumor markers. Potential strategies, such as lentiviral vectors and bacterial type 3 secretion system, are proposed to deliver target-specific Nbs into tumor cells and to block tumor markers intracellularly. Simultaneously, Nbs have also been employed for in vivo molecular imaging to diagnose diseased tissues and to monitor the treatment effects. Here, we review the state of the art and focus on recent developments with Nbs as targeting moieties for drug delivery systems in cancer therapy and cancer imaging.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 315 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 315 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 53 17%
Student > Ph. D. Student 51 16%
Student > Master 37 12%
Researcher 36 11%
Other 14 4%
Other 42 13%
Unknown 82 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 79 25%
Agricultural and Biological Sciences 27 9%
Pharmacology, Toxicology and Pharmaceutical Science 22 7%
Immunology and Microbiology 22 7%
Chemistry 19 6%
Other 47 15%
Unknown 99 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 20. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 February 2023.
All research outputs
#1,878,306
of 25,382,440 outputs
Outputs from Frontiers in immunology
#1,757
of 31,537 outputs
Outputs of similar age
#37,270
of 340,903 outputs
Outputs of similar age from Frontiers in immunology
#40
of 585 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,903 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 585 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.