↓ Skip to main content

TLR3 Ligand Poly(I:C) Exerts Distinct Actions in Synovial Fibroblasts When Delivered by Extracellular Vesicles

Overview of attention for article published in Frontiers in immunology, January 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
65 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
TLR3 Ligand Poly(I:C) Exerts Distinct Actions in Synovial Fibroblasts When Delivered by Extracellular Vesicles
Published in
Frontiers in immunology, January 2018
DOI 10.3389/fimmu.2018.00028
Pubmed ID
Authors

Mojca Frank-Bertoncelj, David S. Pisetsky, Christoph Kolling, Beat A. Michel, Renate E. Gay, Astrid Jüngel, Steffen Gay

Abstract

Extracellular vesicles (EV) can modulate the responses of cells to toll-like receptor (TLR) ligation; conversely, TLR ligands such as double-stranded RNA (dsRNA) can enhance the release of EV and influence of the composition and functions of EV cargos. Inflamed synovial joints in rheumatoid arthritis (RA) are rich in EV and extracellular RNA; besides, RNA released from necrotic synovial fluid cells can activate the TLR3 signaling in synovial fibroblasts (SFs) from patients with RA. Since EV occur prominently in synovial joints in RA and may contribute to the pathogenesis, we questioned whether EV can interact with dsRNA, a TLR3 ligand, and modify its actions in arthritis. We have used as model the effects on RA SFs, of EV released from monocyte U937 cells and peripheral blood mononuclear cells upon stimulation with Poly(I:C), a synthetic analog of dsRNA. We show that EV released from unstimulated cells and Poly(I:C)-stimulated U937 cells [Poly(I:C) EV] differ in size but bind similar amounts of Annexin V and express comparable levels of MAC-1, the receptor for dsRNA, on the vesicular membranes. Specifically, Poly(I:C) EV contain or associate with Poly(I:C) and at least partially protect Poly(I:C) from RNAse III degradation. Poly(I:C) EV shuttle Poly(I:C) to SFs and reproduce the proinflammatory and antiviral gene responses of SFs to direct stimulation with Poly(I:C). Poly(I:C) EV, however, halt the death receptor-induced apoptosis in SFs, thereby inverting the proapoptotic nature of Poly(I:C). These prosurvival effects sharply contrast with the high toxicity of cationic liposome-delivered Poly(I:C) and may reflect the route of Poly(I:C) deliveryviaEV or the fine-tuning of Poly(I:C) actions by molecular cargo in EV. The demonstration that EV may safeguard extracellular dsRNA and allow dsRNA to exert antiapoptotic effects on SFs highlights the potential of EV to amplify the pathogenicity of dsRNA in arthritis beyond inflammation (by concurrently enhancing the expansion of the invasive synovial stroma).

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 65 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 26%
Student > Master 7 11%
Researcher 6 9%
Student > Postgraduate 5 8%
Student > Bachelor 4 6%
Other 11 17%
Unknown 15 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 22%
Immunology and Microbiology 10 15%
Agricultural and Biological Sciences 6 9%
Medicine and Dentistry 6 9%
Engineering 3 5%
Other 6 9%
Unknown 20 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 November 2020.
All research outputs
#7,852,306
of 25,382,440 outputs
Outputs from Frontiers in immunology
#9,298
of 31,537 outputs
Outputs of similar age
#148,688
of 450,499 outputs
Outputs of similar age from Frontiers in immunology
#258
of 642 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 450,499 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 642 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.