↓ Skip to main content

Characterization of Renal Injury and Inflammation in an Experimental Model of Intravascular Hemolysis

Overview of attention for article published in Frontiers in immunology, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
57 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Characterization of Renal Injury and Inflammation in an Experimental Model of Intravascular Hemolysis
Published in
Frontiers in immunology, March 2018
DOI 10.3389/fimmu.2018.00179
Pubmed ID
Authors

Nicolas S. Merle, Anne Grunenwald, Marie-Lucile Figueres, Sophie Chauvet, Marie Daugan, Samantha Knockaert, Tania Robe-Rybkine, Remi Noe, Olivia May, Marie Frimat, Nathan Brinkman, Thomas Gentinetta, Sylvia Miescher, Pascal Houillier, Veronique Legros, Florence Gonnet, Olivier P. Blanc-Brude, Marion Rabant, Regis Daniel, Jordan D. Dimitrov, Lubka T. Roumenina

Abstract

Intravascular erythrocyte destruction, accompanied by the release of pro-oxidative and pro-inflammatory components hemoglobin and heme, is a common event in the pathogenesis of numerous diseases with heterogeneous etiology and clinical features. A frequent adverse effect related to massive hemolysis is the renal injury and inflammation. Nevertheless, it is still unclear whether heme--a danger-associated molecular pattern--and ligand for TLR4 or upstream hemolysis-derived products are responsible for these effects. Well-characterized animal models of hemolysis with kidney impairment are needed to investigate how hemolysis drives kidney injury and to test novel therapeutic strategies. Here, we characterized the pathological processes leading to acute kidney injury and inflammation during massive intravascular hemolysis, using a mouse model of phenylhydrazine (PHZ)-triggered erythrocyte destruction. We observed profound changes in mRNA levels for markers of tubular damage (Kim-1, NGAL) and regeneration (indirect marker of tubular injury, Ki-67), and tissue and vascular inflammation (IL-6, E-selectin, P-selectin, ICAM-1) in kidneys of PHZ-treated mice, associated with ultrastructural signs of tubular injury. Moreover, mass spectrometry revealed presence of markers of tubular damage in urine, including meprin-α, cytoskeletal keratins, α-1-antitrypsin, and α-1-microglobulin. Signs of renal injury and inflammation rapidly resolved and the renal function was preserved, despite major changes in metabolic parameters of PHZ-injected animals. Mechanistically, renal alterations were largely heme-independent, since injection of free heme could not reproduce them, and scavenging heme with hemopexin in PHZ-administered mice could not prevent them. Reduced overall health status of the mice suggested multiorgan involvement. We detected amylasemia and amylasuria, two markers of acute pancreatitis. We also provide detailed characterization of renal manifestations associated with acute intravascular hemolysis, which may be mediated by hemolysis-derived products upstream of heme release. This analysis provides a platform for further investigations of hemolytic diseases and associated renal injury and the evaluation of novel therapeutic strategies that target intravascular hemolysis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 57 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 57 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 18%
Student > Ph. D. Student 9 16%
Student > Doctoral Student 6 11%
Student > Master 6 11%
Student > Bachelor 5 9%
Other 8 14%
Unknown 13 23%
Readers by discipline Count As %
Medicine and Dentistry 14 25%
Biochemistry, Genetics and Molecular Biology 13 23%
Agricultural and Biological Sciences 3 5%
Business, Management and Accounting 2 4%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Other 8 14%
Unknown 15 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 March 2020.
All research outputs
#14,974,586
of 25,461,852 outputs
Outputs from Frontiers in immunology
#13,243
of 31,696 outputs
Outputs of similar age
#178,771
of 345,064 outputs
Outputs of similar age from Frontiers in immunology
#375
of 689 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,696 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,064 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 689 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.