↓ Skip to main content

Foot-and-Mouth Disease Virus Counteracts on Internal Ribosome Entry Site Suppression by G3BP1 and Inhibits G3BP1-Mediated Stress Granule Assembly via Post-Translational Mechanisms

Overview of attention for article published in Frontiers in immunology, May 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Foot-and-Mouth Disease Virus Counteracts on Internal Ribosome Entry Site Suppression by G3BP1 and Inhibits G3BP1-Mediated Stress Granule Assembly via Post-Translational Mechanisms
Published in
Frontiers in immunology, May 2018
DOI 10.3389/fimmu.2018.01142
Pubmed ID
Authors

Xu Ye, Ting Pan, Dang Wang, Liurong Fang, Jun Ma, Xinyu Zhu, Yanling Shi, Keshan Zhang, Haixue Zheng, Huanchun Chen, Kui Li, Shaobo Xiao

Abstract

Foot-and-mouth disease (FMD) is a highly contagious, severe viral illness notifiable to the World Organization for Animal Health. The causative agent, FMD virus (FMDV), replicates rapidly and efficiently inhibits host translation and the innate immune response for it has developed multiple tactics to evade host defenses and takes over gene expression machinery in the host cell. Here, we report a systemic analysis of the proteome and phosphoproteome of FMDV-infected cells. Bioinformatics analysis suggested that FMDV infection shuts off host cap-dependent translation, but leaves intact internal ribosome entry site (IRES)-mediated translation for viral proteins. Interestingly, several FMDV IRES-transacting factors, including G3BP stress granule assembly factor 1 (G3BP1), were dephosphorylated during FMDV infection. Ectopic expression of G3BP1 inhibited FMDV IRES activity, promoted assembly of stress granules, and activated innate immune responses, collectively suppressing FMDV replication. To counteract these host protective responses, FMDV-induced dephosphorylation of G3BP1, compromising its inhibitory effect on viral IRES. In addition, FMDV also proteolytically cleaved G3BP1 by its 3C protease (3Cpro). G3BP1 was cleaved at glutamic acid-284 (E284) by FMDV 3Cpro, and this cleavage completely lost the abilities of G3BP1 to activate innate immunity and to inhibit FMDV replication. Together, these data provide new insights into the post-translational mechanisms by which FMDV limits host stress and antiviral responses and indicate that G3BP1 dephosphorylation and its proteolysis by viral protease are important factors in the failure of host defense against FMDV infection.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 25%
Student > Master 7 19%
Researcher 6 17%
Student > Bachelor 5 14%
Professor 1 3%
Other 2 6%
Unknown 6 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 31%
Agricultural and Biological Sciences 7 19%
Immunology and Microbiology 4 11%
Veterinary Science and Veterinary Medicine 3 8%
Philosophy 1 3%
Other 2 6%
Unknown 8 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 June 2018.
All research outputs
#20,579,256
of 26,161,782 outputs
Outputs from Frontiers in immunology
#23,300
of 33,001 outputs
Outputs of similar age
#256,429
of 347,570 outputs
Outputs of similar age from Frontiers in immunology
#606
of 757 outputs
Altmetric has tracked 26,161,782 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 33,001 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.5. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 347,570 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 757 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.