↓ Skip to main content

Protein Deiminase 4 and CR3 Regulate Aspergillus fumigatus and β-Glucan-Induced Neutrophil Extracellular Trap Formation, but Hyphal Killing Is Dependent Only on CR3

Overview of attention for article published in Frontiers in immunology, May 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
54 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Protein Deiminase 4 and CR3 Regulate Aspergillus fumigatus and β-Glucan-Induced Neutrophil Extracellular Trap Formation, but Hyphal Killing Is Dependent Only on CR3
Published in
Frontiers in immunology, May 2018
DOI 10.3389/fimmu.2018.01182
Pubmed ID
Authors

Heather L. Clark, Serena Abbondante, Martin S. Minns, Elyse N. Greenberg, Yan Sun, Eric Pearlman

Abstract

Neutrophil extracellular trap (NET) formation requires chromatin decondensation before nuclear swelling and eventual extracellular release of DNA, which occurs together with nuclear and cytoplasmic antimicrobial proteins. A key mediator of chromatin decondensation is protein deiminase 4 (PAD4), which catalyzes histone citrullination. In the current study, we examined the role of PAD4 and NETosis following activation of neutrophils by A. fumigatus hyphal extract or cell wall β-glucan (curdlan) and found that both induced NET release by human and murine neutrophils. Also, using blocking antibodies to CR3 and Dectin-1 together with CR3-deficient CD18-/- and Dectin-1-/- murine neutrophils, we found that the β-glucan receptor CR3, but not Dectin-1, was required for NET formation. NETosis was also dependent on NADPH oxidase production of reactive oxygen species (ROS). Using an antibody to citrullinated histone 3 (H3Cit) as an indicator of PAD4 activity, we show that β-glucan stimulated NETosis occurs in neutrophils from C57BL/6, but not PAD4-/- mice. Similarly, a small molecule PAD4 inhibitor (GSK484) blocked NET formation by human neutrophils. Despite these observations, the ability of PAD4-/- neutrophils to release calprotectin and kill A. fumigatus hyphae was not significantly different from C57BL/6 neutrophils, whereas CD18-/- neutrophils exhibited an impaired ability to perform both functions. We also detected H3Cit in A. fumigatus infected C57BL/6, but not PAD4-/- corneas; however, we found no difference between C57BL/6 and PAD4-/- mice in either corneal disease or hyphal killing. Taken together, these findings lead us to conclude that although PAD4 together with CR3-mediated ROS production is required for NET formation in response to A. fumigatus, PAD4-dependent NETosis is not required for A. fumigatus killing either in vitro or during infection.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 16%
Researcher 7 14%
Student > Ph. D. Student 6 12%
Student > Doctoral Student 4 8%
Professor > Associate Professor 3 6%
Other 9 18%
Unknown 13 26%
Readers by discipline Count As %
Immunology and Microbiology 13 26%
Medicine and Dentistry 8 16%
Agricultural and Biological Sciences 6 12%
Biochemistry, Genetics and Molecular Biology 3 6%
Engineering 2 4%
Other 3 6%
Unknown 15 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 December 2018.
All research outputs
#21,440,282
of 26,312,176 outputs
Outputs from Frontiers in immunology
#25,665
of 32,936 outputs
Outputs of similar age
#272,435
of 347,892 outputs
Outputs of similar age from Frontiers in immunology
#632
of 738 outputs
Altmetric has tracked 26,312,176 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 32,936 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.6. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 347,892 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 738 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.