↓ Skip to main content

Mycobacterium tuberculosis Invasion of the Human Lung: First Contact

Overview of attention for article published in Frontiers in immunology, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
95 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mycobacterium tuberculosis Invasion of the Human Lung: First Contact
Published in
Frontiers in immunology, June 2018
DOI 10.3389/fimmu.2018.01346
Pubmed ID
Authors

Jeroen Maertzdorf, Mario Tönnies, Laura Lozza, Sandra Schommer-Leitner, Hans Mollenkopf, Torsten T. Bauer, Stefan H. E. Kaufmann

Abstract

Early immune responses to Mycobacterium tuberculosis (Mtb) invasion of the human lung play a decisive role in the outcome of infection, leading to either rapid clearance of the pathogen or stable infection. Despite their critical impact on health and disease, these early host-pathogen interactions at the primary site of infection are still poorly understood. In vitro studies cannot fully reflect the complexity of the lung architecture and its impact on host-pathogen interactions, while animal models have their own limitations. In this study, we have investigated the initial responses in human lung tissue explants to Mtb infection, focusing primarily on gene expression patterns in different tissue-resident cell types. As first cell types confronted with pathogens invading the lung, alveolar macrophages, and epithelial cells displayed rapid proinflammatory chemokine and cytokine responses to Mtb infection. Other tissue-resident innate cells like gamma/delta T cells, mucosal associated invariant T cells, and natural killer cells showed partially similar but weaker responses, with a high degree of variability across different donors. Finally, we investigated the responses of tissue-resident innate lymphoid cells to the inflammatory milieu induced by Mtb infection. Our infection model provides a unique approach toward host-pathogen interactions at the natural port of Mtb entry and site of its implantation, i.e., the human lung. Our data provide a first detailed insight into the early responses of different relevant pulmonary cells in the alveolar microenvironment to contact with Mtb. These results can form the basis for the identification of host markers that orchestrate early host defense and provide resistance or susceptibility to stable Mtb infection.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 95 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 95 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 17%
Student > Master 12 13%
Student > Bachelor 11 12%
Researcher 9 9%
Student > Doctoral Student 9 9%
Other 11 12%
Unknown 27 28%
Readers by discipline Count As %
Immunology and Microbiology 21 22%
Biochemistry, Genetics and Molecular Biology 12 13%
Agricultural and Biological Sciences 10 11%
Medicine and Dentistry 9 9%
Pharmacology, Toxicology and Pharmaceutical Science 6 6%
Other 9 9%
Unknown 28 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2018.
All research outputs
#14,920,631
of 25,385,509 outputs
Outputs from Frontiers in immunology
#13,191
of 31,537 outputs
Outputs of similar age
#176,089
of 341,509 outputs
Outputs of similar age from Frontiers in immunology
#377
of 736 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,509 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 736 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.