↓ Skip to main content

The Long Noncoding RNA MALAT1 Induces Tolerogenic Dendritic Cells and Regulatory T Cells via miR155/Dendritic Cell-Specific Intercellular Adhesion Molecule-3 Grabbing Nonintegrin/IL10 Axis

Overview of attention for article published in Frontiers in immunology, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
77 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Long Noncoding RNA MALAT1 Induces Tolerogenic Dendritic Cells and Regulatory T Cells via miR155/Dendritic Cell-Specific Intercellular Adhesion Molecule-3 Grabbing Nonintegrin/IL10 Axis
Published in
Frontiers in immunology, August 2018
DOI 10.3389/fimmu.2018.01847
Pubmed ID
Authors

Jian Wu, Hanlu Zhang, Yang Zheng, Xiangyuan Jin, Mingyang Liu, Shuang Li, Qi Zhao, Xianglan Liu, Yongshun Wang, Ming Shi, Shengnan Zhang, Jinwei Tian, Yong Sun, Maomao Zhang, Bo Yu

Abstract

By shaping T cell immunity, tolerogenic dendritic cells (tDCs) play critical roles in the induction of immune tolerance after transplantation. However, the role of long noncoding RNAs (lncRNAs) in the function and immune tolerance of dendritic cells (DCs) is largely unknown. Here, we found that the lncRNA MALAT1 is upregulated in the infiltrating cells of tolerized mice with cardiac allografts and activated DCs. Functionally, MALAT1 overexpression favored a switch in DCs toward a tolerant phenotype. Mechanistically, ectopic MALAT1 promoted dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) expression by functioning as an miR155 sponge, which is essential for the tolerogenic maintenance of DCs and the DC-SIGN-positive subset with more potent tolerogenic ability. The adoptive transfer of MALAT1-overexpressing DCs promoted cardiac allograft survival and protected from the development of experimental autoimmune myocarditis, accompanied with increasing antigen-specific regulatory T cells. Therefore, overexpressed MALAT1 induces tDCs and immune tolerance in heart transplantation and autoimmune disease by the miRNA-155/DC-SIGH/IL10 axis. This study highlights that the lncRNA MALAT1 is a novel tolerance regulator in immunity that has important implications in settings in which tDCs are preferred.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 19%
Student > Master 7 12%
Student > Bachelor 4 7%
Student > Postgraduate 4 7%
Student > Doctoral Student 2 3%
Other 5 8%
Unknown 26 44%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 27%
Immunology and Microbiology 7 12%
Medicine and Dentistry 6 10%
Psychology 3 5%
Agricultural and Biological Sciences 1 2%
Other 2 3%
Unknown 24 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2018.
All research outputs
#15,745,807
of 25,385,509 outputs
Outputs from Frontiers in immunology
#15,390
of 31,537 outputs
Outputs of similar age
#190,171
of 341,279 outputs
Outputs of similar age from Frontiers in immunology
#355
of 635 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 31,537 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.4. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,279 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 635 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.