↓ Skip to main content

Establishment and Characterization of a Functionally Competent Type 2 Conventional Dendritic Cell Line

Overview of attention for article published in Frontiers in immunology, August 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Establishment and Characterization of a Functionally Competent Type 2 Conventional Dendritic Cell Line
Published in
Frontiers in immunology, August 2018
DOI 10.3389/fimmu.2018.01912
Pubmed ID
Authors

Matteo Pigni, Devika Ashok, Mathias Stevanin, Hans Acha-Orbea

Abstract

Dendritic cells (DCs) are the most potent antigen presenting cells and possess an incomparable ability to activate and instruct T cells, which makes them one of the cornerstones in the regulation of the cross-talk between innate and adaptive immunity. Therefore, a deep understanding of DC biology lays the foundations to describe and to harness the mechanisms that regulate the development of the adaptive response, with clear implications in a vast array of fields such as the study of autoimmune diseases and the development of new vaccines. However, the great difficulty to obtain large quantities of viable non-activated DCs for experimentation have considerably hindered the progress of DC research. Several strategies have been proposed to overcome these limitations by promoting an increase of DC abundance in vivo, by inducing DC development from DC progenitors in vitro and by generating stable DC lines. In the past years, we have described a method to derive immortalized stable DC lines, named MutuDCs, from the spleens of Mushi1 mice, a transgenic mouse strain that express the simian virus 40 Large T-oncogene in the DCs. The comparison of these DC lines with the vast variety of DC subsets described in vivo has shown that all the MutuDC lines that we have generated so far have phenotypic and functional features of type 1 conventional DCs (cDC1s). With the purpose of deriving DC lines with characteristics of type 2 conventional DCs (cDC2s), we bred a new Batf3-/- Mushi1 murine line in which the development of the cDC1 subset is severely defective. The new MutuDC line that we generated from Batf3-/- Mushi1 mice was phenotypically and functionally characterized in this work. Our results demonstrated that all the tested characteristics of this new cell line, including the expression of subset-determining transcription factors, the profile of cytokine production and the ability to present antigens, are comparable with the features of splenic CD4- cDC2s. Therefore, we concluded that our new cell line, that we named CD4- MutuDC2 line, represents a valuable model for the CD4- cDC2 subset.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 24%
Student > Master 9 21%
Researcher 5 12%
Student > Bachelor 4 10%
Student > Doctoral Student 2 5%
Other 3 7%
Unknown 9 21%
Readers by discipline Count As %
Immunology and Microbiology 12 29%
Biochemistry, Genetics and Molecular Biology 9 21%
Agricultural and Biological Sciences 7 17%
Medicine and Dentistry 2 5%
Veterinary Science and Veterinary Medicine 1 2%
Other 3 7%
Unknown 8 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2018.
All research outputs
#15,699,067
of 26,184,649 outputs
Outputs from Frontiers in immunology
#14,729
of 33,037 outputs
Outputs of similar age
#184,614
of 346,403 outputs
Outputs of similar age from Frontiers in immunology
#331
of 621 outputs
Altmetric has tracked 26,184,649 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 33,037 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.5. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 346,403 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 621 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.