↓ Skip to main content

Tissue Biomarkers in Hepatocellular Tumors: Which, When, and How

Overview of attention for article published in Frontiers in Medicine, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tissue Biomarkers in Hepatocellular Tumors: Which, When, and How
Published in
Frontiers in Medicine, February 2017
DOI 10.3389/fmed.2017.00010
Pubmed ID
Authors

Luca Di Tommaso, Massimo Roncalli

Abstract

Few tissue markers are currently available to pathologists in the study of hepatocellular tumors. These markers should be used carefully taking into consideration not only morphology but also, and sometimes even more important, the clinical setting where the lesion to be diagnosed had developed. Glypican-3, heat shock protein 70, and glutamine synthetase (GS) are markers currently used, as a single panel, to discriminate the nature of a <2 cm hepatocellular lesion lacking radiological features of hepatocellular carcinoma (HCC) detected in a cirrhotic patient under surveillance. Their use, which can be improved by clathrin heavy chain, is mostly requested on liver biopsy. Hepatocyte paraffin 1, arginase-1, polyclonal carcinoembryonic antigen, CD10, and bile salt export pump are tissue markers used to confirm, at histology, the diagnosis of HCC made by imaging before enrollment for phase III studies on novel anti-HCC drugs. In this setting, pathologists are usually requested a conclusive diagnosis on a liver biopsy of a poorly differentiated, necrotic, enriched in stem-phenotype, carcinoma. Liver fatty acid-binding protein, serum amyloid A, C-reactive protein, prostaglandin D2 synthetase, GS, and β-catenin can be used either on biopsy or surgical specimen to classify hepatocellular adenoma into hepatocyte nuclear factor (HNF-1α) inactivated (steatotic), inflammatory, with dysregulation of sonic hedgehog and prostaglandin pathways, β-catenin mutated, and unclassified.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 23%
Researcher 5 13%
Student > Master 3 8%
Student > Doctoral Student 2 5%
Student > Bachelor 2 5%
Other 5 13%
Unknown 14 35%
Readers by discipline Count As %
Medicine and Dentistry 9 23%
Biochemistry, Genetics and Molecular Biology 5 13%
Immunology and Microbiology 2 5%
Unspecified 1 3%
Nursing and Health Professions 1 3%
Other 6 15%
Unknown 16 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 February 2017.
All research outputs
#13,190,641
of 22,955,959 outputs
Outputs from Frontiers in Medicine
#1,977
of 5,725 outputs
Outputs of similar age
#155,722
of 311,210 outputs
Outputs of similar age from Frontiers in Medicine
#20
of 38 outputs
Altmetric has tracked 22,955,959 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,725 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.1. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,210 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.