↓ Skip to main content

Effects of Laser Radiation on Mitochondria and Mitochondrial Proteins Subjected to Nitric Oxide

Overview of attention for article published in Frontiers in Medicine, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects of Laser Radiation on Mitochondria and Mitochondrial Proteins Subjected to Nitric Oxide
Published in
Frontiers in Medicine, April 2018
DOI 10.3389/fmed.2018.00112
Pubmed ID
Authors

Anatoly N. Osipov, Tatiana V. Machneva, Evgeny A. Buravlev, Yury A. Vladimirov

Abstract

The biological roles of heme and nonheme nitrosyl complexes in physiological and pathophysiological conditions as metabolic key players are considered in this study. Two main physiological functions of protein nitrosyl complexes are discussed-(1) a depot and potential source of free nitric oxide (NO) and (2) a controller of crucial metabolic processes. The first function is realized through the photolysis of nitrosyl complexes (of hemoglobin, cytochrome c, or mitochondrial iron-sulfur proteins). This reaction produces free NO and subsequent events are due to the NO physiological functions. The second function is implemented by the possibility of NO to bind heme and nonheme proteins and produce corresponding nitrosyl complexes. Enzyme nitrosyl complex formation usually results in the inhibition (or enhancement in the case of guanylate cyclase) of its enzymatic activity. Photolysis of protein nitrosyl complexes, in this case, will restore the original enzymatic activity. Thus, cytochrome c acquires peroxidase activity in the presence of anionic phospholipids, and this phenomenon can be assumed as a key step in the programmed cell death. Addition of NO induces the formation of cytochrome c nitrosyl complexes, inhibits its peroxidase activity, and hinders apoptotic reactions. In this case, photolysis of cytochrome c nitrosyl complexes will reactivate cytochrome c peroxidase activity and speed up apoptosis. Control of mitochondrial respiration by NO by formation or photolytic decay of iron-sulfur protein nitrosyl complexes is an effective instrument to modulate mitochondrial metabolism. These questions are under discussion in this study.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 19%
Student > Master 4 15%
Researcher 4 15%
Student > Doctoral Student 2 7%
Student > Bachelor 2 7%
Other 2 7%
Unknown 8 30%
Readers by discipline Count As %
Medicine and Dentistry 8 30%
Biochemistry, Genetics and Molecular Biology 4 15%
Chemistry 2 7%
Physics and Astronomy 2 7%
Nursing and Health Professions 1 4%
Other 3 11%
Unknown 7 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 May 2018.
All research outputs
#14,981,465
of 23,045,021 outputs
Outputs from Frontiers in Medicine
#2,786
of 5,807 outputs
Outputs of similar age
#197,188
of 326,557 outputs
Outputs of similar age from Frontiers in Medicine
#74
of 114 outputs
Altmetric has tracked 23,045,021 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,807 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.3. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,557 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 114 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.