↓ Skip to main content

Microbial Iron(II) Oxidation in Littoral Freshwater Lake Sediment: The Potential for Competition between Phototrophic vs. Nitrate-Reducing Iron(II)-Oxidizers

Overview of attention for article published in Frontiers in Microbiology, January 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
110 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Microbial Iron(II) Oxidation in Littoral Freshwater Lake Sediment: The Potential for Competition between Phototrophic vs. Nitrate-Reducing Iron(II)-Oxidizers
Published in
Frontiers in Microbiology, January 2012
DOI 10.3389/fmicb.2012.00197
Pubmed ID
Authors

E. D. Melton, C. Schmidt, A. Kappler

Abstract

The distribution of neutrophilic microbial iron oxidation is mainly determined by local gradients of oxygen, light, nitrate and ferrous iron. In the anoxic top part of littoral freshwater lake sediment, nitrate-reducing and phototrophic Fe(II)-oxidizers compete for the same e(-) donor; reduced iron. It is not yet understood how these microbes co-exist in the sediment and what role they play in the Fe cycle. We show that both metabolic types of anaerobic Fe(II)-oxidizing microorganisms are present in the same sediment layer directly beneath the oxic-anoxic sediment interface. The photoferrotrophic most probable number counted 3.4·10(5) cells·g(-1) and the autotrophic and mixotrophic nitrate-reducing Fe(II)-oxidizers totaled 1.8·10(4) and 4.5·10(4) cells·g(-1) dry weight sediment, respectively. To distinguish between the two microbial Fe(II) oxidation processes and assess their individual contribution to the sedimentary Fe cycle, littoral lake sediment was incubated in microcosm experiments. Nitrate-reducing Fe(II)-oxidizing bacteria exhibited a higher maximum Fe(II) oxidation rate per cell, in both pure cultures and microcosms, than photoferrotrophs. In microcosms, photoferrotrophs instantly started oxidizing Fe(II), whilst nitrate-reducing Fe(II)-oxidizers showed a significant lag-phase during which they probably use organics as e(-) donor before initiating Fe(II) oxidation. This suggests that they will be outcompeted by phototrophic Fe(II)-oxidizers during optimal light conditions; as phototrophs deplete Fe(II) before nitrate-reducing Fe(II)-oxidizers start Fe(II) oxidation. Thus, the co-existence of the two anaerobic Fe(II)-oxidizers may be possible due to a niche space separation in time by the day-night cycle, where nitrate-reducing Fe(II)-oxidizers oxidize Fe(II) during darkness and phototrophs play a dominant role in Fe(II) oxidation during daylight. Furthermore, metabolic flexibility of Fe(II)-oxidizing microbes may play a paramount role in the conservation of the sedimentary Fe cycle.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 110 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Canada 2 2%
Switzerland 1 <1%
Germany 1 <1%
India 1 <1%
Netherlands 1 <1%
Unknown 104 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 25%
Researcher 19 17%
Student > Master 15 14%
Professor 6 5%
Student > Bachelor 6 5%
Other 21 19%
Unknown 16 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 27%
Environmental Science 23 21%
Earth and Planetary Sciences 10 9%
Chemistry 8 7%
Biochemistry, Genetics and Molecular Biology 4 4%
Other 8 7%
Unknown 27 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 May 2012.
All research outputs
#20,165,369
of 22,675,759 outputs
Outputs from Frontiers in Microbiology
#22,069
of 24,472 outputs
Outputs of similar age
#221,176
of 244,088 outputs
Outputs of similar age from Frontiers in Microbiology
#228
of 317 outputs
Altmetric has tracked 22,675,759 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,472 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,088 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 317 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.