↓ Skip to main content

Effect of Antimicrobial Exposure on AcrAB Expression in Salmonella enterica Subspecies enterica Serovar Choleraesuis

Overview of attention for article published in Frontiers in Microbiology, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effect of Antimicrobial Exposure on AcrAB Expression in Salmonella enterica Subspecies enterica Serovar Choleraesuis
Published in
Frontiers in Microbiology, January 2013
DOI 10.3389/fmicb.2013.00053
Pubmed ID
Authors

Masaru Usui, Hidetaka Nagai, Mototaka Hiki, Yutaka Tamura, Tetsuo Asai

Abstract

Understanding the impact of antimicrobial use on the emergence of resistant bacteria is imperative to prevent its emergence. For instance, activation of the AcrAB efflux pumps is responsible for the emergence of antimicrobial-resistant Salmonella strains. Here, we examined the expression levels of acrB and its multiple regulator genes (RamA, SoxS, MarA, and Rob) in 17 field isolates of S. Choleraesuis by using quantitative PCR methods. The expression of acrB increased in eight of the field isolates (P < 0.05). The expression of acrB was associated with that of ramA in one isolate, soxS in one isolate, and both these genes in six isolates. Thereafter, to examine the effect of selected antimicrobials (enrofloxacin, ampicillin, oxytetracycline, kanamycin, and spectinomycin) on the expression of acrB and its regulator genes, mutants derived from five isolates of S. Choleraesuis were selected by culture on antimicrobial-containing plates. The expression of acrB and ramA was higher in the mutants selected using enrofloxacin (3.3-6.3- and 24.5-37.7-fold, respectively), ampicillin (1.8-7.7- and 16.1-55.9-fold, respectively), oxytetracycline (1.7-3.3- and 3.2-31.1-fold, respectively), and kanamycin (1.6-2.2- and 5.6-26.4-fold, respectively), which are AcrAB substrates, than in each of the parental strains (P < 0.05). In contrast, in AcrAB substrate-selected mutants, the expression of soxS, marA, and rob remained similar to that in parental strains. Of the four antimicrobials, the level of ramA expression was significantly higher in the enrofloxacin- and ampicillin-selected mutants than in the oxytetracycline- and kanamycin-selected mutants (P < 0.05), whereas the expression levels of acrB and multiple regulator genes in spectinomycin-selected mutants were similar to those in each parental strain. These data suggest that exposure to antimicrobials that are AcrAB substrates enhance the activation of the AcrAB efflux pump via RamA, but not via SoxS, MarA, or Rob in S. Choleraesuis.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
South Africa 1 2%
Unknown 41 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 9 21%
Student > Ph. D. Student 6 14%
Student > Bachelor 6 14%
Researcher 5 12%
Student > Doctoral Student 3 7%
Other 8 19%
Unknown 5 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 29%
Immunology and Microbiology 5 12%
Medicine and Dentistry 4 10%
Biochemistry, Genetics and Molecular Biology 4 10%
Veterinary Science and Veterinary Medicine 2 5%
Other 7 17%
Unknown 8 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 March 2013.
All research outputs
#20,185,720
of 22,701,287 outputs
Outputs from Frontiers in Microbiology
#22,111
of 24,515 outputs
Outputs of similar age
#248,721
of 280,698 outputs
Outputs of similar age from Frontiers in Microbiology
#264
of 407 outputs
Altmetric has tracked 22,701,287 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,515 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,698 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 407 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.