↓ Skip to main content

Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities

Overview of attention for article published in Frontiers in Microbiology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities
Published in
Frontiers in Microbiology, January 2013
DOI 10.3389/fmicb.2013.00182
Pubmed ID
Authors

Barbara J. Campbell, Shawn W. Polson, Lisa Zeigler Allen, Shannon J. Williamson, Charles K. Lee, K. Eric Wommack, S. Craig Cary

Abstract

Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 4 6%
Canada 1 2%
Unknown 59 92%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 17%
Researcher 10 16%
Student > Master 8 13%
Student > Bachelor 7 11%
Professor > Associate Professor 6 9%
Other 17 27%
Unknown 5 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 38%
Environmental Science 10 16%
Biochemistry, Genetics and Molecular Biology 8 13%
Earth and Planetary Sciences 5 8%
Immunology and Microbiology 4 6%
Other 6 9%
Unknown 7 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 September 2014.
All research outputs
#13,386,934
of 22,714,025 outputs
Outputs from Frontiers in Microbiology
#10,444
of 24,549 outputs
Outputs of similar age
#158,267
of 280,752 outputs
Outputs of similar age from Frontiers in Microbiology
#163
of 407 outputs
Altmetric has tracked 22,714,025 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,549 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,752 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 407 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.