↓ Skip to main content

Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin

Overview of attention for article published in Frontiers in Microbiology, January 2013
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin
Published in
Frontiers in Microbiology, January 2013
DOI 10.3389/fmicb.2013.00207
Pubmed ID
Authors

Stefanie Meyer, Gunter Wegener, Karen G. Lloyd, Andreas Teske, Antje Boetius, Alban Ramette

Abstract

The Guaymas Basin (Gulf of California) hydrothermal vent area is known as a dynamic and hydrothermally vented sedimentary system, where the advection and production of a variety of different metabolic substrates support a high microbial diversity and activity in the seafloor. The main objective of our study was to explore the role of temperature and other environmental factors on community diversity, such as the presence of microbial mats and seafloor bathymetry within one hydrothermally vented field of 200 × 250 m dimension. In this field, temperature increased strongly with sediment depth reaching the known limit of life within a few decimeters. Potential sulfate reduction rate as a key community activity parameter was strongly affected by in situ temperature and sediment depth, declining from high rates of 1-5 μmol ml(-1) d(-1) at the surface to the detection limit below 5 cm sediment depth, despite the presence of sulfate and hydrocarbons. Automated Ribosomal Intergenic Spacer Analysis yielded a high-resolution fingerprint of the dominant members of the bacterial community. Our analyses showed strong temperature and sediment depth effects on bacterial cell abundance and Operational Taxonomic Units (OTUs) number, both declining by more than one order of magnitude below the top 5 cm of the sediment surface. Another fraction of the variation in diversity and community structure was explained by differences in the local bathymetry and spatial position within the vent field. Nevertheless, more than 80% of all detected OTUs were shared among the different temperature realms and sediment depths, after being classified as cold (T < 10°C), medium (10°C ≤ T < 40°C) or hot (T ≥ 40°C) temperature conditions, with significant OTU overlap with the richer surface communities. Overall, this indicates a high connectivity of benthic bacterial habitats in this dynamic and heterogeneous marine ecosystem influenced by strong hydrothermalism.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 5 8%
United Kingdom 1 2%
Canada 1 2%
Brazil 1 2%
Unknown 51 86%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 25%
Student > Ph. D. Student 12 20%
Student > Master 8 14%
Student > Doctoral Student 5 8%
Professor > Associate Professor 4 7%
Other 10 17%
Unknown 5 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 39%
Earth and Planetary Sciences 8 14%
Environmental Science 7 12%
Biochemistry, Genetics and Molecular Biology 3 5%
Medicine and Dentistry 2 3%
Other 6 10%
Unknown 10 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 September 2014.
All research outputs
#7,753,480
of 23,577,761 outputs
Outputs from Frontiers in Microbiology
#8,536
of 26,068 outputs
Outputs of similar age
#85,996
of 284,974 outputs
Outputs of similar age from Frontiers in Microbiology
#138
of 406 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 26,068 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 284,974 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 406 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.