↓ Skip to main content

The agricultural antibiotic carbadox induces phage-mediated gene transfer in Salmonella

Overview of attention for article published in Frontiers in Microbiology, January 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
125 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The agricultural antibiotic carbadox induces phage-mediated gene transfer in Salmonella
Published in
Frontiers in Microbiology, January 2014
DOI 10.3389/fmicb.2014.00052
Pubmed ID
Authors

Bradley L. Bearson, Heather K. Allen, Brian W. Brunelle, In Soo Lee, Sherwood R. Casjens, Thaddeus B. Stanton

Abstract

Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the US during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli (STEC) and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness genes in the environment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 125 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
Switzerland 1 <1%
Unknown 122 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 17%
Researcher 20 16%
Student > Bachelor 18 14%
Student > Master 14 11%
Student > Postgraduate 8 6%
Other 20 16%
Unknown 24 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 40 32%
Biochemistry, Genetics and Molecular Biology 19 15%
Immunology and Microbiology 12 10%
Veterinary Science and Veterinary Medicine 10 8%
Environmental Science 4 3%
Other 13 10%
Unknown 27 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 March 2014.
All research outputs
#12,833,654
of 22,743,667 outputs
Outputs from Frontiers in Microbiology
#9,013
of 24,608 outputs
Outputs of similar age
#156,037
of 305,223 outputs
Outputs of similar age from Frontiers in Microbiology
#36
of 87 outputs
Altmetric has tracked 22,743,667 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,608 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 305,223 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 87 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.