↓ Skip to main content

Role of Gag and lipids during HIV-1 assembly in CD4+ T cells and macrophages

Overview of attention for article published in Frontiers in Microbiology, June 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Role of Gag and lipids during HIV-1 assembly in CD4+ T cells and macrophages
Published in
Frontiers in Microbiology, June 2014
DOI 10.3389/fmicb.2014.00312
Pubmed ID
Authors

Charlotte Mariani, Marion Desdouits, Cyril Favard, Philippe Benaroch, Delphine M. Muriaux

Abstract

HIV-1 is an RNA enveloped virus that preferentially infects CD4(+) T lymphocytes and also macrophages. In CD4(+) T cells, HIV-1 mainly buds from the host cell plasma membrane. The viral Gag polyprotein targets the plasma membrane and is the orchestrator of the HIV assembly as its expression is sufficient to promote the formation of virus-like particles carrying a lipidic envelope derived from the host cell membrane. Certain lipids are enriched in the viral membrane and are thought to play a key role in the assembly process and the envelop composition. A large body of work performed on infected CD4(+) T cells has provided important knowledge about the assembly process and the membrane virus lipid composition. While HIV assembly and budding in macrophages is thought to follow the same general Gag-driven mechanism as in T-lymphocytes, the HIV cycle in macrophage exhibits specific features. In these cells, new virions bud from the limiting membrane of seemingly intracellular compartments, where they accumulate while remaining infectious. These structures are now often referred to as Virus Containing Compartments (VCCs). Recent studies suggest that VCCs represent intracellularly sequestered regions of the plasma membrane, but their precise nature remains elusive. The proteomic and lipidomic characterization of virions produced by T cells or macrophages has highlighted the similarity between their composition and that of the plasma membrane of producer cells, as well as their enrichment in acidic lipids, some components of raft lipids and in tetraspanin-enriched microdomains. It is likely that Gag promotes the coalescence of these components into an assembly platform from which viral budding takes place. How Gag exactly interacts with membrane lipids and what are the mechanisms involved in the interaction between the different membrane nanodomains within the assembly platform remains unclear. Here we review recent literature regarding the role of Gag and lipids on HIV-1 assembly in CD4(+) T cells and macrophages.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Portugal 2 3%
United States 1 1%
Unknown 69 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 25%
Student > Ph. D. Student 15 21%
Student > Master 10 14%
Student > Bachelor 4 6%
Student > Doctoral Student 4 6%
Other 10 14%
Unknown 11 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 27 38%
Biochemistry, Genetics and Molecular Biology 13 18%
Immunology and Microbiology 11 15%
Medicine and Dentistry 2 3%
Physics and Astronomy 2 3%
Other 4 6%
Unknown 13 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 June 2014.
All research outputs
#20,231,820
of 22,757,541 outputs
Outputs from Frontiers in Microbiology
#22,228
of 24,635 outputs
Outputs of similar age
#192,474
of 227,909 outputs
Outputs of similar age from Frontiers in Microbiology
#143
of 182 outputs
Altmetric has tracked 22,757,541 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,635 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 227,909 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 182 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.