↓ Skip to main content

The requirements for rumen-degradable protein per unit of fermentable organic matter differ between fibrous feed sources

Overview of attention for article published in Frontiers in Microbiology, July 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The requirements for rumen-degradable protein per unit of fermentable organic matter differ between fibrous feed sources
Published in
Frontiers in Microbiology, July 2015
DOI 10.3389/fmicb.2015.00715
Pubmed ID
Authors

Carla R. Soliva, Sergej L. Amelchanka, Michael Kreuzer

Abstract

Ruminant feed evaluation systems use constant minimum requirements of rumen-degradable protein (RDP) and often relate this to apparently degradable organic matter (OM). However, studies with tropical forages indicate that RDP: apparently degraded OM might not be constant across high-fiber diets. This was tested with semi-continuous ruminal cultures (Rusitec) using dried contrasting low-protein fiber sources: brachiaria hay (high in fiber, medium lignified), apple pomace (medium in fiber, highly lignified), and sugar beet pulp (medium in fiber and lignification). Each feed was incubated at 14 g dry matter day(-1) with 0, 0.85, 1.7, 3.4, 6.8, 13.6, or 27.2 mg g(-1) urea. The amount of urea needed to reach a similar basal concentration of ammonia in the incubation fluid was tested for each feed in advance. Apparent fiber and OM degradability were determined after 48 h of incubation. Data was evaluated by regressions and analysis of variance. The response curve of incubation fluid ammonia to urea supplementation was similar in slope in all feeds. Plateaus in apparent OM degradability in relation to ammonia concentration were determined. The ammonia concentration where apparent OM and fiber degradability reached 95% of maximum was approached in the order of pomace < pulp < hay. With regard to fiber degradability, a plateau was reached at ≥ 80 g kg(-1) crude protein only with hay and pomace, whilst a linear relationship existed between RDP and OM degradation for pulp. In hay the ratio RDP: OM degraded was equal to 1.6 but was only 1.0 in the other feeds. There was no obvious lack of branched short-chain fatty acids at low RDP. Thus, the hypothesis was confirmed but the demand for RDP seems even higher in tropical forage compared to food industrial byproducts. The efficiency of urea to promote apparent OM and fiber degradation was also variable. Thus, it seems that minimum thresholds of either RDP or ruminal ammonia concentration may not be reflected appropriately by constants.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 15%
Student > Ph. D. Student 6 11%
Researcher 5 9%
Student > Doctoral Student 5 9%
Student > Bachelor 4 8%
Other 13 25%
Unknown 12 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 28 53%
Veterinary Science and Veterinary Medicine 3 6%
Unspecified 2 4%
Immunology and Microbiology 2 4%
Chemical Engineering 1 2%
Other 4 8%
Unknown 13 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 July 2015.
All research outputs
#20,879,072
of 23,498,099 outputs
Outputs from Frontiers in Microbiology
#23,507
of 25,939 outputs
Outputs of similar age
#221,312
of 264,142 outputs
Outputs of similar age from Frontiers in Microbiology
#283
of 345 outputs
Altmetric has tracked 23,498,099 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,939 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,142 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 345 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.