↓ Skip to main content

Hydrologic linkages drive spatial structuring of bacterial assemblages and functioning in alpine floodplains

Overview of attention for article published in Frontiers in Microbiology, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hydrologic linkages drive spatial structuring of bacterial assemblages and functioning in alpine floodplains
Published in
Frontiers in Microbiology, November 2015
DOI 10.3389/fmicb.2015.01221
Pubmed ID
Authors

Remo Freimann, Helmut Bürgmann, Stuart E. G. Findlay, Christopher T. Robinson

Abstract

Microbial community assembly and microbial functions are affected by a number of different but coupled drivers such as local habitat characteristics, dispersal rates, and species interactions. In groundwater systems, hydrological flow can introduce spatial structure and directional dependencies among these drivers. We examined the importance of hydrology in structuring bacterial communities and their function within two alpine floodplains during different hydrological states. Piezometers were installed in stream sediments and surrounding riparian zones to assess hydrological flows and also were used as incubation chambers to examine bacterial community structures and enzymatic functions along hydrological flow paths. Spatial eigenvector models in conjunction with models based on physico-chemical groundwater characteristics were used to evaluate the importance of hydrologically-driven processes influencing bacterial assemblages and their enzymatic activities. Our results suggest a strong influence (up to 40% explained variation) of hydrological connectivity on enzymatic activities. The effect of hydrology on bacterial community structure was considerably less strong, suggesting that assemblages demonstrate large functional plasticity/redundancy. Effect size varied between hydrological periods but flow-related mechanisms always had the most power in explaining both bacterial structure and functioning. Changes in hydrology should be considered in models predicting ecosystem functioning and integrated into ecosystem management strategies for floodplains.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 2%
Unknown 59 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 15 25%
Researcher 9 15%
Student > Doctoral Student 7 12%
Student > Master 7 12%
Professor 4 7%
Other 6 10%
Unknown 12 20%
Readers by discipline Count As %
Environmental Science 17 28%
Agricultural and Biological Sciences 10 17%
Earth and Planetary Sciences 5 8%
Biochemistry, Genetics and Molecular Biology 4 7%
Immunology and Microbiology 3 5%
Other 3 5%
Unknown 18 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 November 2015.
All research outputs
#14,827,682
of 22,831,537 outputs
Outputs from Frontiers in Microbiology
#13,809
of 24,806 outputs
Outputs of similar age
#157,689
of 285,121 outputs
Outputs of similar age from Frontiers in Microbiology
#229
of 435 outputs
Altmetric has tracked 22,831,537 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,806 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 285,121 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 435 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.