↓ Skip to main content

Identification and Partial Characterization of Potential FtsL and FtsQ Homologs of Chlamydia

Overview of attention for article published in Frontiers in Microbiology, November 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification and Partial Characterization of Potential FtsL and FtsQ Homologs of Chlamydia
Published in
Frontiers in Microbiology, November 2015
DOI 10.3389/fmicb.2015.01264
Pubmed ID
Authors

Scot P. Ouellette, Kelsey J. Rueden, Yasser M. AbdelRahman, John V. Cox, Robert J. Belland

Abstract

Chlamydia is amongst the rare bacteria that lack the critical cell division protein FtsZ. By annotation, Chlamydia also lacks several other essential cell division proteins including the FtsLBQ complex that links the early (e.g., FtsZ) and late (e.g., FtsI/Pbp3) components of the division machinery. Here, we report chlamydial FtsL and FtsQ homologs. Ct271 aligned well with Escherichia coli FtsL and shared sequence homology with it, including a predicted leucine-zipper like motif. Based on in silico modeling, we show that Ct764 has structural homology to FtsQ in spite of little sequence similarity. Importantly, ct271/ftsL and ct764/ftsQ are present within all sequenced chlamydial genomes and are expressed during the replicative phase of the chlamydial developmental cycle, two key characteristics for a chlamydial cell division gene. GFP-Ct764 localized to the division septum of dividing transformed chlamydiae, and, importantly, over-expression inhibited chlamydial development. Using a bacterial two-hybrid approach, we show that Ct764 interacted with other components of the chlamydial division apparatus. However, Ct764 was not capable of complementing an E. coli FtsQ depletion strain in spite of its ability to interact with many of the same division proteins as E. coli FtsQ, suggesting that chlamydial FtsQ may function differently. We previously proposed that Chlamydia uses MreB and other rod-shape determining proteins as an alternative system for organizing the division site and its apparatus. Chlamydial FtsL and FtsQ homologs expand the number of identified chlamydial cell division proteins and suggest that Chlamydia has likely kept the late components of the division machinery while substituting the Mre system for the early components.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 4%
Unknown 25 96%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 19%
Student > Ph. D. Student 5 19%
Researcher 5 19%
Student > Master 2 8%
Student > Postgraduate 2 8%
Other 2 8%
Unknown 5 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 35%
Biochemistry, Genetics and Molecular Biology 6 23%
Medicine and Dentistry 3 12%
Immunology and Microbiology 2 8%
Computer Science 1 4%
Other 0 0%
Unknown 5 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 December 2015.
All research outputs
#14,240,855
of 22,832,057 outputs
Outputs from Frontiers in Microbiology
#12,421
of 24,810 outputs
Outputs of similar age
#145,730
of 281,840 outputs
Outputs of similar age from Frontiers in Microbiology
#210
of 435 outputs
Altmetric has tracked 22,832,057 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,810 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 281,840 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 435 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.