↓ Skip to main content

Genetic Analysis and Detection of fliCH1 and fliCH12 Genes Coding for Serologically Closely Related Flagellar Antigens in Human and Animal Pathogenic Escherichia coli

Overview of attention for article published in Frontiers in Microbiology, February 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genetic Analysis and Detection of fliCH1 and fliCH12 Genes Coding for Serologically Closely Related Flagellar Antigens in Human and Animal Pathogenic Escherichia coli
Published in
Frontiers in Microbiology, February 2016
DOI 10.3389/fmicb.2016.00135
Pubmed ID
Authors

Lothar Beutin, Sabine Delannoy, Patrick Fach

Abstract

The E. coli flagellar types H1 and H12 show a high serological cross-reactivity and molecular serotyping appears an advantageous method to establish a clear discrimination between these flagellar types. Analysis of fliC H1 and fliC H12 gene sequences showed that they were 97.5% identical at the nucleotide level. Because of this high degree of homology we developed a two-step real-time PCR detection procedure for reliable discrimination of H1 and H12 flagellar types in E. coli. In the first step, a real-time PCR assay for common detection of both fliC H1 and fliC H12 genes is used, followed in a second step by real-time PCR assays for specific detection of fliC H1 and fliC H12, respectively. The real-time PCR for common detection of fliC H1 and fliC H12 demonstrated 100% sensitivity and specificity as it reacted with all tested E. coli H1 and H12 strains and not with any of the reference strains encoding all the other 51 flagellar antigens. The fliC H1 and fliC H12 gene specific assays detected all E. coli H1 and all E. coli H12 strains, respectively (100% sensitivity). However, both assays showed cross-reactions with some flagellar type reference strains different from H1 and H12. The real-time PCR assays developed in this study can be used in combination for the detection and identification of E. coli H1 and H12 strains isolated from different sources.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 25%
Student > Master 3 19%
Student > Doctoral Student 2 13%
Student > Ph. D. Student 2 13%
Researcher 2 13%
Other 0 0%
Unknown 3 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 25%
Agricultural and Biological Sciences 3 19%
Immunology and Microbiology 3 19%
Unknown 6 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 February 2016.
All research outputs
#20,308,732
of 22,849,304 outputs
Outputs from Frontiers in Microbiology
#22,449
of 24,849 outputs
Outputs of similar age
#339,648
of 403,162 outputs
Outputs of similar age from Frontiers in Microbiology
#475
of 534 outputs
Altmetric has tracked 22,849,304 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,849 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 403,162 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 534 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.