↓ Skip to main content

Rapid Purification and Characterization of Mutant Origin Recognition Complexes in Saccharomyces cerevisiae

Overview of attention for article published in Frontiers in Microbiology, April 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rapid Purification and Characterization of Mutant Origin Recognition Complexes in Saccharomyces cerevisiae
Published in
Frontiers in Microbiology, April 2016
DOI 10.3389/fmicb.2016.00521
Pubmed ID
Authors

Hironori Kawakami, Eiji Ohashi, Toshiki Tsurimoto, Tsutomu Katayama

Abstract

Purification of the origin recognition complex (ORC) from wild-type budding yeast cells more than two decades ago opened up doors to analyze the initiation of eukaryotic chromosomal DNA replication biochemically. Although revised methods to purify ORC from overproducing cells were reported later, purification of mutant proteins using these systems still depends on time-consuming processes including genetic manipulation to construct and amplify mutant baculoviruses or yeast strains as well as several canonical protein fractionations. Here, we present a streamlined method to construct mutant overproducers, followed by purification of mutant ORCs. Use of mammalian cells co-transfected with conveniently mutagenized plasmids bearing a His tag excludes many of the construction and fractionation steps. Transfection is highly efficient. All the six subunits of ORC are overexpressed at a considerable level and isolated as a functional heterohexameric complex. Furthermore, use of mammalian cells prevents contamination of wild-type ORC from yeast cells. The method is applicable to wild-type and at least three mutant ORCs, and the resultant purified complexes show expected biochemical activities. The rapid acquisition of mutant ORCs using this system will boost systematic biochemical dissection of ORC and can be even applied to the purification of protein complexes other than ORC.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 25%
Student > Master 2 17%
Student > Ph. D. Student 1 8%
Researcher 1 8%
Professor > Associate Professor 1 8%
Other 0 0%
Unknown 4 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 25%
Biochemistry, Genetics and Molecular Biology 2 17%
Engineering 2 17%
Computer Science 1 8%
Business, Management and Accounting 1 8%
Other 0 0%
Unknown 3 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2016.
All research outputs
#18,451,892
of 22,862,742 outputs
Outputs from Frontiers in Microbiology
#19,370
of 24,875 outputs
Outputs of similar age
#219,031
of 299,111 outputs
Outputs of similar age from Frontiers in Microbiology
#409
of 558 outputs
Altmetric has tracked 22,862,742 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,875 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,111 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 558 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.