↓ Skip to main content

A Network of Paralogous Stress Response Transcription Factors in the Human Pathogen Candida glabrata

Overview of attention for article published in Frontiers in Microbiology, May 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Network of Paralogous Stress Response Transcription Factors in the Human Pathogen Candida glabrata
Published in
Frontiers in Microbiology, May 2016
DOI 10.3389/fmicb.2016.00645
Pubmed ID
Authors

Jawad Merhej, Antonin Thiebaut, Corinne Blugeon, Juliette Pouch, Mohammed El Amine Ali Chaouche, Jean-Michel Camadro, Stéphane Le Crom, Gaëlle Lelandais, Frédéric Devaux

Abstract

The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq), transcriptome analyses, and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1) transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata, and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption, and iron metabolism.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 9 20%
Student > Ph. D. Student 8 17%
Student > Doctoral Student 5 11%
Student > Bachelor 4 9%
Researcher 4 9%
Other 8 17%
Unknown 8 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 35%
Biochemistry, Genetics and Molecular Biology 13 28%
Immunology and Microbiology 3 7%
Medicine and Dentistry 2 4%
Computer Science 2 4%
Other 1 2%
Unknown 9 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 June 2016.
All research outputs
#13,175,336
of 23,577,761 outputs
Outputs from Frontiers in Microbiology
#9,119
of 26,068 outputs
Outputs of similar age
#138,593
of 303,572 outputs
Outputs of similar age from Frontiers in Microbiology
#263
of 583 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 26,068 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 303,572 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 583 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.