↓ Skip to main content

Sequential Mixed Cultures: From Syngas to Malic Acid

Overview of attention for article published in Frontiers in Microbiology, June 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
1 X user
patent
1 patent

Citations

dimensions_citation
54 Dimensions

Readers on

mendeley
113 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sequential Mixed Cultures: From Syngas to Malic Acid
Published in
Frontiers in Microbiology, June 2016
DOI 10.3389/fmicb.2016.00891
Pubmed ID
Authors

Florian Oswald, Stefan Dörsam, Nicolas Veith, Michaela Zwick, Anke Neumann, Katrin Ochsenreither, Christoph Syldatk

Abstract

Synthesis gas (syngas) fermentation using acetogenic bacteria is an approach for production of bulk chemicals like acetate, ethanol, butanol, or 2,3-butandiol avoiding the fuel vs. food debate by using carbon monoxide, carbon dioxide, and hydrogen from gasification of biomass or industrial waste gases. Suffering from energetic limitations, yields of C4-molecules produced by syngas fermentation are quite low compared with ABE fermentation using sugars as a substrate. On the other hand, fungal production of malic acid has high yields of product per gram metabolized substrate but is currently limited to sugar containing substrates. In this study, it was possible to show that Aspergilus oryzae is able to produce malic acid using acetate as sole carbon source which is a main product of acetogenic syngas fermentation. Bioreactor cultivations were conducted in 2.5 L stirred tank reactors. During the syngas fermentation part of the sequential mixed culture, Clostridium ljungdahlii was grown in modified Tanner medium and sparged with 20 mL/min of artificial syngas mimicking a composition of clean syngas from entrained bed gasification of straw (32.5 vol-% CO, 32.5 vol-% H2, 16 vol-% CO2, and 19 vol-% N2) using a microsparger. Syngas consumption was monitored via automated gas chromatographic measurement of the off-gas. For the fungal fermentation part gas sparging was switched to 0.6 L/min of air and a standard sparger. Ammonia content of medium for syngas fermentation was reduced to 0.33 g/L NH4Cl to meet the requirements for fungal production of dicarboxylic acids. Malic acid production performance of A. oryzae in organic acid production medium and syngas medium with acetate as sole carbon source was verified and gave YP∕S values of 0.28 g/g and 0.37 g/g respectively. Growth and acetate formation of C. ljungdahlii during syngas fermentation were not affected by the reduced ammonia content and 66 % of the consumed syngas was converted to acetate. The overall conversion of CO and H2 into malic acid was calculated to be 3.5 g malic acid per mol of consumed syngas or 0.22 g malic acid per gram of syngas.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 113 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 113 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 24 21%
Student > Master 20 18%
Researcher 15 13%
Student > Bachelor 14 12%
Student > Doctoral Student 6 5%
Other 13 12%
Unknown 21 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 25 22%
Chemical Engineering 16 14%
Agricultural and Biological Sciences 11 10%
Engineering 11 10%
Environmental Science 9 8%
Other 14 12%
Unknown 27 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 February 2017.
All research outputs
#7,239,860
of 22,879,161 outputs
Outputs from Frontiers in Microbiology
#7,688
of 24,901 outputs
Outputs of similar age
#119,581
of 353,105 outputs
Outputs of similar age from Frontiers in Microbiology
#220
of 533 outputs
Altmetric has tracked 22,879,161 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 24,901 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,105 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 533 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.