↓ Skip to main content

Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities

Overview of attention for article published in Frontiers in Microbiology, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities
Published in
Frontiers in Microbiology, July 2016
DOI 10.3389/fmicb.2016.01046
Pubmed ID
Authors

Tomas Erban, Pavel B. Klimov, Jaroslav Smrz, Thomas W. Phillips, Marta Nesvorna, Jan Kopecky, Jan Hubert

Abstract

Tyrophagus putrescentiae colonizes different human-related habitats and feeds on various post-harvest foods. The microbiota acquired by these mites can influence the nutritional plasticity in different populations. We compared the bacterial communities of five populations of T. putrescentiae and one mixed population of T. putrescentiae and T. fanetzhangorum collected from different habitats. The bacterial communities of the six mite populations from different habitats and diets were compared by Sanger sequencing of cloned 16S rRNA obtained from amplification with universal eubacterial primers and using bacterial taxon-specific primers on the samples of adults/juveniles or eggs. Microscopic techniques were used to localize bacteria in food boli and mite bodies. The morphological determination of the mite populations was confirmed by analyses of CO1 and ITS fragment genes. The following symbiotic bacteria were found in compared mite populations: Wolbachia (two populations), Cardinium (five populations), Bartonella-like (five populations), Blattabacterium-like symbiont (three populations), and Solitalea-like (six populations). From 35 identified OTUs97, only Solitalea was identified in all populations. The next most frequent and abundant sequences were Bacillus, Moraxella, Staphylococcus, Kocuria, and Microbacterium. We suggest that some bacterial species may occasionally be ingested with food. The bacteriocytes were observed in some individuals in all mite populations. Bacteria were not visualized in food boli by staining, but bacteria were found by histological means in ovaria of Wolbachia-infested populations. The presence of Blattabacterium-like, Cardinium, Wolbachia, and Solitalea-like in the eggs of T. putrescentiae indicates mother to offspring (vertical) transmission. RESULTS of this study indicate that diet and habitats influence not only the ingested bacteria but also the symbiotic bacteria of T. putrescentiae.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Czechia 1 2%
Thailand 1 2%
Unknown 40 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 17%
Researcher 7 17%
Student > Master 5 12%
Student > Bachelor 3 7%
Student > Postgraduate 2 5%
Other 5 12%
Unknown 13 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 43%
Environmental Science 2 5%
Arts and Humanities 2 5%
Biochemistry, Genetics and Molecular Biology 2 5%
Unspecified 1 2%
Other 4 10%
Unknown 13 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 April 2018.
All research outputs
#14,289,247
of 23,343,453 outputs
Outputs from Frontiers in Microbiology
#11,791
of 25,678 outputs
Outputs of similar age
#201,519
of 356,232 outputs
Outputs of similar age from Frontiers in Microbiology
#244
of 488 outputs
Altmetric has tracked 23,343,453 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,678 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 356,232 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 488 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.