↓ Skip to main content

How Clonal Is Clonal? Genome Plasticity across Multicellular Segments of a “Candidatus Marithrix sp.” Filament from Sulfidic, Briny Seafloor Sediments in the Gulf of Mexico

Overview of attention for article published in Frontiers in Microbiology, August 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

blogs
1 blog
twitter
4 X users
googleplus
1 Google+ user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
How Clonal Is Clonal? Genome Plasticity across Multicellular Segments of a “Candidatus Marithrix sp.” Filament from Sulfidic, Briny Seafloor Sediments in the Gulf of Mexico
Published in
Frontiers in Microbiology, August 2016
DOI 10.3389/fmicb.2016.01173
Pubmed ID
Authors

Verena Salman-Carvalho, Eduard Fadeev, Samantha B. Joye, Andreas Teske

Abstract

"Candidatus Marithrix" is a recently described lineage within the group of large sulfur bacteria (Beggiatoaceae, Gammaproteobacteria). This genus of bacteria comprises vacuolated, attached-living filaments that inhabit the sediment surface around vent and seep sites in the marine environment. A single filament is ca. 100 μm in diameter, several millimeters long, and consists of hundreds of clonal cells, which are considered highly polyploid. Based on these characteristics, "Candidatus Marithrix" was used as a model organism for the assessment of genomic plasticity along segments of a single filament using next generation sequencing to possibly identify hotspots of microevolution. Using six consecutive segments of a single filament sampled from a mud volcano in the Gulf of Mexico, we recovered ca. 90% of the "Candidatus Marithrix" genome in each segment. There was a high level of genome conservation along the filament with average nucleotide identities between 99.98 and 100%. Different approaches to assemble all reads into a complete consensus genome could not fill the gaps. Each of the six segment datasets encoded merely a few hundred unique nucleotides and 5 or less unique genes-the residual content was redundant in all datasets. Besides the overall high genomic identity, we identified a similar number of single nucleotide polymorphisms (SNPs) between the clonal segments, which are comparable to numbers reported for other clonal organisms. An increase of SNPs with greater distance of filament segments was not observed. The polyploidy of the cells was apparent when analyzing the heterogeneity of reads within a segment. Here, a strong increase in single nucleotide variants, or "intrasegmental sequence heterogeneity" (ISH) events, was observed. These sites may represent hotspots for genome plasticity, and possibly microevolution, since two thirds of these variants were not co-localized across the genome copies of the multicellular filament.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 8%
Unknown 23 92%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 24%
Researcher 4 16%
Student > Ph. D. Student 4 16%
Librarian 2 8%
Student > Doctoral Student 1 4%
Other 2 8%
Unknown 6 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 28%
Environmental Science 4 16%
Earth and Planetary Sciences 2 8%
Computer Science 2 8%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 2 8%
Unknown 7 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 September 2017.
All research outputs
#2,638,278
of 23,342,092 outputs
Outputs from Frontiers in Microbiology
#2,164
of 25,679 outputs
Outputs of similar age
#49,850
of 369,217 outputs
Outputs of similar age from Frontiers in Microbiology
#60
of 437 outputs
Altmetric has tracked 23,342,092 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 25,679 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 369,217 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 437 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.