↓ Skip to main content

The Animal Model Determines the Results of Aeromonas Virulence Factors

Overview of attention for article published in Frontiers in Microbiology, October 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Animal Model Determines the Results of Aeromonas Virulence Factors
Published in
Frontiers in Microbiology, October 2016
DOI 10.3389/fmicb.2016.01574
Pubmed ID
Authors

Alejandro Romero, Paolo R. Saraceni, Susana Merino, Antonio Figueras, Juan M. Tomás, Beatriz Novoa

Abstract

The selection of an experimental animal model is of great importance in the study of bacterial virulence factors. Here, a bath infection of zebrafish larvae is proposed as an alternative model to study the virulence factors of Aeromonas hydrophila. Intraperitoneal infections in mice and trout were compared with bath infections in zebrafish larvae using specific mutants. The great advantage of this model is that bath immersion mimics the natural route of infection, and injury to the tail also provides a natural portal of entry for the bacteria. The implication of T3SS in the virulence of A. hydrophila was analyzed using the AH-1::aopB mutant. This mutant was less virulent than the wild-type strain when inoculated into zebrafish larvae, as described in other vertebrates. However, the zebrafish model exhibited slight differences in mortality kinetics only observed using invertebrate models. Infections using the mutant AH-1ΔvapA lacking the gene coding for the surface S-layer suggested that this protein was not totally necessary to the bacteria once it was inside the host, but it contributed to the inflammatory response. Only when healthy zebrafish larvae were infected did the mutant produce less mortality than the wild-type. Variations between models were evidenced using the AH-1ΔrmlB, which lacks the O-antigen lipopolysaccharide (LPS), and the AH-1ΔwahD, which lacks the O-antigen LPS and part of the LPS outer-core. Both mutants showed decreased mortality in all of the animal models, but the differences between them were only observed in injured zebrafish larvae, suggesting that residues from the LPS outer core must be important for virulence. The greatest differences were observed using the AH-1ΔFlaB-J (lacking polar flagella and unable to swim) and the AH-1::motX (non-motile but producing flagella). They were as pathogenic as the wild-type strain when injected into mice and trout, but no mortalities were registered in zebrafish larvae. This study demonstrates that zebrafish larvae can be used as a host model to assess the virulence factors of A. hydrophila. This model revealed more differences in pathogenicity than the in vitro models and enabled the detection of slight variations in pathogenesis not observed using intraperitoneal injections of mice or fish.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 2%
South Africa 1 2%
Unknown 52 96%

Demographic breakdown

Readers by professional status Count As %
Student > Master 9 17%
Student > Bachelor 7 13%
Researcher 5 9%
Student > Ph. D. Student 5 9%
Lecturer 3 6%
Other 10 19%
Unknown 15 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 20%
Biochemistry, Genetics and Molecular Biology 9 17%
Immunology and Microbiology 9 17%
Environmental Science 1 2%
Unspecified 1 2%
Other 4 7%
Unknown 19 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 October 2016.
All research outputs
#20,344,065
of 22,890,496 outputs
Outputs from Frontiers in Microbiology
#22,535
of 24,938 outputs
Outputs of similar age
#276,841
of 319,862 outputs
Outputs of similar age from Frontiers in Microbiology
#346
of 439 outputs
Altmetric has tracked 22,890,496 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,938 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,862 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 439 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.