↓ Skip to main content

Novel Pathways for Ameliorating the Fitness Cost of Gentamicin Resistant Small Colony Variants

Overview of attention for article published in Frontiers in Microbiology, November 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Novel Pathways for Ameliorating the Fitness Cost of Gentamicin Resistant Small Colony Variants
Published in
Frontiers in Microbiology, November 2016
DOI 10.3389/fmicb.2016.01866
Pubmed ID
Authors

Martin Vestergaard, Wilhelm Paulander, Bingfeng Leng, Jesper B. Nielsen, Henrik T. Westh, Hanne Ingmer

Abstract

Small colony variants (SCVs) of the human pathogen Staphylococcus aureus are associated with persistent infections. Phenotypically, SCVs are characterized by slow growth and they can arise upon interruption of the electron transport chain that consequently reduce membrane potential and thereby limit uptake of aminoglycosides (e.g., gentamicin). In this study, we have examined the pathways by which the fitness cost of SCVs can be ameliorated. Five gentamicin resistant SCVs derived from S. aureus JE2 were independently selected on agar plates supplemented with gentamicin. The SCVs carried mutations in the menaquinone and hemin biosynthesis pathways, which caused a significant reduction in exponential growth rates relative to wild type (WT; 0.59-0.72) and reduced membrane potentials. Fifty independent lineages of the low-fitness, resistant mutants were serially passaged for up to 500 generations with or without sub-lethal concentrations of gentamicin. Amelioration of the fitness cost followed three evolutionary trajectories and was dependent on the initial mutation type (point mutation vs. deletion) and the passage condition (absence or presence of gentamicin). For SCVs evolved in the absence of gentamicin, 12 out of 15 lineages derived from SCVs with point mutations acquired intra-codonic suppressor mutations restoring membrane potential, growth rate, gentamicin susceptibility and colony size to WT levels. For the SCVs carrying deletions, all lineages enhanced fitness independent of membrane potential restoration without alterations in gentamicin resistance levels. By whole genome sequencing, we identified compensatory mutations in genes related to the σ(B) stress response (7 out of 10 lineages). Inactivation of rpoF that encode for the alternative sigma factor SigB (σ(B)) partially restored fitness of SCVs. For all lineages passaged in the presence of gentamicin, fitness compensation via membrane potential restoration was suppressed, however, selected for secondary mutations in fusA and SAUSA300_0749. This study is the first to describe fitness compensatory events in SCVs with deletion mutations and adaptation of SCVs to continued exposure to gentamicin.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 9 24%
Student > Ph. D. Student 7 19%
Researcher 6 16%
Student > Doctoral Student 3 8%
Student > Master 3 8%
Other 5 14%
Unknown 4 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 27%
Agricultural and Biological Sciences 9 24%
Medicine and Dentistry 6 16%
Immunology and Microbiology 2 5%
Chemistry 2 5%
Other 2 5%
Unknown 6 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 November 2016.
All research outputs
#15,395,259
of 22,903,988 outputs
Outputs from Frontiers in Microbiology
#15,239
of 24,953 outputs
Outputs of similar age
#249,594
of 415,136 outputs
Outputs of similar age from Frontiers in Microbiology
#268
of 419 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,953 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 30th percentile – i.e., 30% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,136 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 419 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.