↓ Skip to main content

The Different Roles of Penicillium oxalicum LaeA in the Production of Extracellular Cellulase and β-xylosidase

Overview of attention for article published in Frontiers in Microbiology, December 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Different Roles of Penicillium oxalicum LaeA in the Production of Extracellular Cellulase and β-xylosidase
Published in
Frontiers in Microbiology, December 2016
DOI 10.3389/fmicb.2016.02091
Pubmed ID
Authors

Yanan Li, Xiaoju Zheng, Xiujun Zhang, Longfei Bao, Yingying Zhu, Yinbo Qu, Jian Zhao, Yuqi Qin

Abstract

Cellulolytic enzyme hydrolysis of lignocellulose biomass to release fermentable sugars is one of the key steps in biofuel refining. Gene expression of fungal cellulolytic enzymes is tightly controlled at the transcriptional level. Key transcription factors such as activator ClrB/CLR2 and XlnR/XYR1, as well as repressor CreA/CRE1 play crucial roles in this process. The putative protein methyltransferase LaeA/LAE1 has also been reported to regulate the gene expression of the cellulolytic enzyme. The formation and gene expression of the cellulolytic enzyme was compared among Penicillium oxalicum wild type (WT) and seven mutants, including ΔlaeA (deletion of laeA), OEclrB (clrB overexpression), OEclrBΔlaeA (clrB overexpression with deletion of laeA), OExlnR (xlnR overexpression), OExlnRΔlaeA (xlnR overexpression with deletion of laeA), ΔcreA (deletion of creA), and ΔcreAΔlaeA (double deletion of creA and laeA). Results revealed that LaeA extensively affected the expression of glycoside hydrolase genes. The expression of genes that encoded the top 10 glycoside hydrolases assayed in secretome was remarkably downregulated especially in later phases of prolonged batch cultures by the deletion of laeA. Cellulase synthesis of four mutants ΔlaeA, OEclrBΔlaeA, OExlnRΔlaeA, and ΔcreAΔlaeA was repressed remarkably compared with their parent strains WT, OEclrB, OExlnR, and ΔcreA, respectively. The overexpression of clrB or xlnR could not rescue the impairment of cellulolytic enzyme gene expression and cellulase synthesis when LaeA was absent, suggesting that LaeA was necessary for the expression of cellulolytic enzyme gene activated by ClrB or XlnR. In contrast to LaeA positive roles in regulating prominent cellulase and hemicellulase, the extracellular β-xylosidase formation was negatively regulated by LaeA. The extracellular β-xylosidase activities improved over 5-fold in the OExlnRΔlaeA mutant compared with that of WT, and the expression of prominent β-xylosidase gene xyl3A was activated remarkably. The cumulative effect of LaeA and transcription factor XlnR has potential applications in the production of more β-xylosidase.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 29%
Student > Master 7 15%
Student > Doctoral Student 6 13%
Researcher 6 13%
Student > Bachelor 3 6%
Other 3 6%
Unknown 9 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 22 46%
Agricultural and Biological Sciences 8 17%
Social Sciences 2 4%
Environmental Science 1 2%
Business, Management and Accounting 1 2%
Other 5 10%
Unknown 9 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 January 2017.
All research outputs
#19,594,120
of 24,093,053 outputs
Outputs from Frontiers in Microbiology
#21,332
of 27,122 outputs
Outputs of similar age
#318,695
of 428,221 outputs
Outputs of similar age from Frontiers in Microbiology
#340
of 405 outputs
Altmetric has tracked 24,093,053 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 27,122 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one is in the 8th percentile – i.e., 8% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 428,221 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 405 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.