↓ Skip to main content

PprM, a Cold Shock Domain-Containing Protein from Deinococcus radiodurans, Confers Oxidative Stress Tolerance to Escherichia coli

Overview of attention for article published in Frontiers in Microbiology, January 2017
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
PprM, a Cold Shock Domain-Containing Protein from Deinococcus radiodurans, Confers Oxidative Stress Tolerance to Escherichia coli
Published in
Frontiers in Microbiology, January 2017
DOI 10.3389/fmicb.2016.02124
Pubmed ID
Authors

Sun-Ha Park, Harinder Singh, Deepti Appukuttan, Sunwook Jeong, Yong Jun Choi, Jong-Hyun Jung, Issay Narumi, Sangyong Lim

Abstract

Escherichia coli is a representative microorganism that is frequently used for industrial biotechnology; thus its cellular robustness should be enhanced for the widespread application of E. coli in biotechnology. Stress response genes from the extremely radioresistant bacterium Deinococcus radiodurans have been used to enhance the stress tolerance of E. coli. In the present study, we introduced the cold shock domain-containing protein PprM from D. radiodurans into E. coli and observed that the tolerance to hydrogen peroxide (H2O2) was significantly increased in recombinant strains (Ec-PprM). The overexpression of PprM in E. coli elevated the expression of some OxyR-dependent genes, which play important roles in oxidative stress tolerance. Particularly, mntH (manganese transporter) was activated by 9-fold in Ec-PprM, even in the absence of H2O2 stress, which induced a more than 2-fold increase in the Mn/Fe ratio compared with wild type. The reduced production of highly reactive hydroxyl radicals (·OH) and low protein carbonylation levels (a marker of oxidative damage) in Ec-PprM indicate that the increase in the Mn/Fe ratio contributes to the protection of cells from H2O2 stress. PprM also conferred H2O2 tolerance to E. coli in the absence of OxyR. We confirmed that the H2O2 tolerance of oxyR mutants reflected the activation of the ycgZ-ymgABC operon, whose expression is activated by H2O2 in an OxyR-independent manner. Thus, the results of the present study showed that PprM could be exploited to improve the robustness of E. coli.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 26%
Student > Bachelor 7 18%
Researcher 3 8%
Student > Master 3 8%
Student > Doctoral Student 2 5%
Other 6 15%
Unknown 8 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 33%
Agricultural and Biological Sciences 7 18%
Engineering 3 8%
Environmental Science 2 5%
Immunology and Microbiology 2 5%
Other 2 5%
Unknown 10 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 February 2017.
All research outputs
#20,403,545
of 22,953,506 outputs
Outputs from Frontiers in Microbiology
#22,581
of 24,987 outputs
Outputs of similar age
#356,891
of 421,786 outputs
Outputs of similar age from Frontiers in Microbiology
#366
of 394 outputs
Altmetric has tracked 22,953,506 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,987 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,786 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 394 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.