↓ Skip to main content

Combined Carbohydrates Support Rich Communities of Particle-Associated Marine Bacterioplankton

Overview of attention for article published in Frontiers in Microbiology, January 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Combined Carbohydrates Support Rich Communities of Particle-Associated Marine Bacterioplankton
Published in
Frontiers in Microbiology, January 2017
DOI 10.3389/fmicb.2017.00065
Pubmed ID
Authors

Martin Sperling, Judith Piontek, Anja Engel, Karen H. Wiltshire, Jutta Niggemann, Gunnar Gerdts, Antje Wichels

Abstract

Carbohydrates represent an important fraction of labile and semi-labile marine organic matter that is mainly comprised of exopolymeric substances derived from phytoplankton exudation and decay. This study investigates the composition of total combined carbohydrates (tCCHO; >1 kDa) and the community development of free-living (0.2-3 μm) and particle-associated (PA) (3-10 μm) bacterioplankton during a spring phytoplankton bloom in the southern North Sea. Furthermore, rates were determined for the extracellular enzymatic hydrolysis that catalyzes the initial step in bacterial organic matter remineralization. Concentrations of tCCHO greatly increased during bloom development, while the composition showed only minor changes over time. The combined concentration of glucose, galactose, fucose, rhamnose, galactosamine, glucosamine, and glucuronic acid in tCCHO was a significant factor shaping the community composition of the PA bacteria. The richness of PA bacteria greatly increased in the post-bloom phase. At the same time, the increase in extracellular β-glucosidase activity was sufficient to explain the observed decrease in tCCHO, indicating the efficient utilization of carbohydrates by the bacterioplankton community during the post-bloom phase. Our results suggest that carbohydrate concentration and composition are important factors in the multifactorial environmental control of bacterioplankton succession and the enzymatic hydrolysis of organic matter during phytoplankton blooms.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Germany 1 1%
Unknown 72 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 15 21%
Student > Ph. D. Student 14 19%
Researcher 13 18%
Student > Bachelor 5 7%
Professor > Associate Professor 5 7%
Other 6 8%
Unknown 15 21%
Readers by discipline Count As %
Environmental Science 21 29%
Agricultural and Biological Sciences 15 21%
Biochemistry, Genetics and Molecular Biology 10 14%
Earth and Planetary Sciences 6 8%
Immunology and Microbiology 2 3%
Other 3 4%
Unknown 16 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 February 2017.
All research outputs
#14,042,019
of 22,950,943 outputs
Outputs from Frontiers in Microbiology
#11,478
of 24,980 outputs
Outputs of similar age
#222,486
of 420,210 outputs
Outputs of similar age from Frontiers in Microbiology
#267
of 424 outputs
Altmetric has tracked 22,950,943 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,980 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,210 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 424 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.