↓ Skip to main content

Serine-Rich Repeat Adhesins Contribute to Streptococcus gordonii-Induced Maturation of Human Dendritic Cells

Overview of attention for article published in Frontiers in Microbiology, March 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Serine-Rich Repeat Adhesins Contribute to Streptococcus gordonii-Induced Maturation of Human Dendritic Cells
Published in
Frontiers in Microbiology, March 2017
DOI 10.3389/fmicb.2017.00523
Pubmed ID
Authors

Eun Byeol Ko, Sun Kyung Kim, Ho Seong Seo, Cheol-Heui Yun, Seung Hyun Han

Abstract

Dendritic cells (DCs) play a pivotal role in the induction of immunity by recognition, capture, process, and presentation of antigens from infectious microbes. Streptococcus gordonii is able to cause life-threatening systemic diseases such as infective endocarditis. Serine-rich repeat (SRR) glycoproteins of S. gordonii are sialic acid-binding adhesins mediating the bacterial adherence to the host and the development of infective endocarditis. Thus, the SRR adhesins are potentially involved in the bacterial adherence to DCs and the maturation and activation of DCs required for the induction of immunity to S. gordonii. Here, we investigated the phenotypic and functional changes of human monocyte-derived DCs treated with wild-type S. gordonii or the SRR adhesin-deficient mutant. The mutant poorly bound to DCs and only weakly increased the expression of CD83, CD86, MHC class II, and PD-L1 on DCs compared with the wild-type. In addition, the mutant induced lower levels of TNF-α, IL-6, and IL-12 than the wild-type in DCs. When DCs sensitized with the mutant were co-cultured with autologous T cells, they induced weaker proliferation and activation of T cells than DCs stimulated with the wild-type. Blockade of SRR adhesin with 3'-sialyllactose markedly reduced S. gordonii binding and internalization, causing attenuation of the bacterial immunostimulatory potency in DC maturation. Collectively, our results suggest that SRR adhesins of S. gordonii are important for maturation and activation of DCs.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 19%
Student > Postgraduate 3 14%
Student > Master 3 14%
Student > Bachelor 1 5%
Lecturer 1 5%
Other 0 0%
Unknown 9 43%
Readers by discipline Count As %
Immunology and Microbiology 4 19%
Medicine and Dentistry 3 14%
Biochemistry, Genetics and Molecular Biology 2 10%
Agricultural and Biological Sciences 1 5%
Social Sciences 1 5%
Other 1 5%
Unknown 9 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 April 2017.
All research outputs
#14,929,731
of 22,963,381 outputs
Outputs from Frontiers in Microbiology
#13,893
of 25,009 outputs
Outputs of similar age
#184,542
of 309,407 outputs
Outputs of similar age from Frontiers in Microbiology
#320
of 491 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 25,009 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,407 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 491 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.